Пути поступления охв в организм токсические дозы. Наиболее распространенным способом поступления токсических веществ в организм является пероральный. Химически опасные объекты

Ряд ядовитых жирорастворимых соединений - фенолы, некоторые соли, особенно цианиды, всасываются и поступают в кровь уже в полости рта.

На протяжении желудочно-кишечного тракта существуют значительные градиенты рН, определяющие различную скорость всасывания токсических веществ. Кислотность желудочного сока близка к единице, вследствие чего все кислоты здесь находятся в неионизированном состоянии и легко всасываются. Напротив, неионизированные основания (например, морфин, ноксирон) поступают из крови в желудок и отсюда в виде ионизированной формы движутся далее в кишечник (рис. 3). Токсические вещества в желудке могут сорбироваться пищевыми массами, разбавляться ими, в результате чего уменьшается контакт яда со слизистой оболочкой. Кроме того, на скорость всасывания влияют интенсивность кровообращения в слизистой оболочке желудка, перистальтика, количество слизи и пр.

Рис. 3. Направление пассивного транспорта веществ кислого (1) и щелочного (2) характера в зависимости от рН среды по сторонам мембраны на примере слизистой оболочки желудка (по А. Л. Мясникову).

В основном всасывание ядовитых веществ происходит в тонком кишечнике, секрет которого имеет рН 7,5-8,0. В общей форме барьер кишечная среда/кровь представляется следующим образом: эпителий, мембрана эпителия со стороны капилляра, базальная мембрана капилляра (рис. 4).

Рис. 4. Проникновение различных веществ через стенку капилляра. 1 - прямой путь через эндотелиальную клетку; 2 - через межэндотелиальные промежутки; 3 - комбинированный путь с помощью диффузии или фильтрации; 4 - везикулярный путь; 5-комбинированный путь через межэндотелиальные промежутки и с помощью везикулярных процессов

Колебания рН кишечной среды, наличие ферментов, большое количество соединений, образующихся в процессе пищеварения в химусе на крупных белковых молекулах и сорбция на них, - все это влияет на резорбцию ядовитых соединений и их депонирование в желудочно-кишечном тракте. Некоторые вещества, например тяжелые металлы, непосредственно повреждают кишечный эпителий и нарушают всасывание. В кишечнике, так же как и в желудке, липоидорастворимые вещества хорошо всасываются путем диффузии, а всасывание электролитов связано со степенью их ионизации. Это определяет быструю резорбцию оснований (атропин, хинин, анилин, амидопирин и пр.). Например, при отравлении беллоидом (белласпон) фазность в развитии клинической картины отравления объясняется тем, что одни ингредиенты этого препарата (барбитураты) всасываются в желудке, а другие (холинолитики, эрготамин) - в кишечнике, т. е. последние поступают в кровь несколько позже, чем первые.

Вещества, близкие по химическому строению к природным соединениям, всасываются путем пиноцитоза, проявляющегося наиболее активно в области микроворсинок щетьчной каемки тонкой кишки. Трудно всасываются прочные комплексы токсических веществ с белками, что свойственно, например, редкоземельным металлам.

Замедление регионарного кровотока и депонирование венозной крови в области кишечника при экзотоксиче-ском шоке приводят к уравниванию локальных концентраций ядов в крови и в содержимом кишечника, что составляет патогенетическую основу замедления всасывания и увеличения местного токсического эффекта. Например, при отравлении гемолитическими ядами (уксусная эссенция) это приводит к более интенсивному разрушению эритроцитов в капиллярах стенки желудка и быстрому проявлению в этой зоне тромбогеморрагиче-ского синдрома (тромбоз вен иодслизистого слоя желудка, множественные кровоизлияния и пр.).

Указанные явления депонирования токсических веществ в желудочно-кишечном тракте при пероральных отравлениях свидетельствуют о необходимости его тщательного очищения не только при раннем, но и при позднем поступлении больного.

Рис. 5. Схема строения легочных альвеол. 1-ядро и цитоплазма клетки эпителия; 2 - тканевое пространство; 3 - эндоплазматическая базальная мембрана; 4-альвеолярная клетка; 5 - эпителий базальной мембраны; б - цитоплазма капиллярного эндотелия; 7 - ядерная клетка эндотелия; 8 - ядро эндотелиальной клетки.

Ингаляционные отравления характеризуются наиболее быстрым поступлением яда в кровь. Это объясняется большой поверхностью всасывания легочных альвеол (100-150 м2), малой толщиной альвеолярных мембран, интенсивным током крови по легочным капиллярам и отсутствием условий для значительного депонирования ядов.

Структуру барьера между воздухом и кровью можно схематически представить в следующем виде: липидная пленка, мукоидная пленка, слой альвеолярных клеток, базальная мембрана эпителия, сливающаяся с базальной мембраной капилляров (рис. 5).

Всасывание летучих соединений начинается уже в верхних дыхательных путях, но наиболее полно осуществляется в легких. Происходит оно по закону диффузии в соответствии с градиентом концентрации. Подобным образом поступают в организм многие летучие неэлектролиты: углеводороды, галогеноуглеводороды, спирты, эфиры и пр. Скорость поступления определяется их физико-химическими свойствами и в меньшей степени состоянием организма (интенсивность дыхания и кровообращения в легких).

Большое значение имеет коэффициент растворимости паров ядовитого вещества в воде (коэффициент Оствальда). Чем больше его значение, тем больше вещества из воздуха поступает в кровь и тем длительнее процесс достижения конечной равновесной концентрации между кровью и воздухом.

Многие летучие неэлектролиты не только быстро растворяются в жидкой части крови, но и связываются с белками плазмы и эритроцитами, в результате чего коэффициенты их распределения между артериальной кровью и альвеолярным воздухом (К) несколько выше их коэффициентов растворимости в воде (л).

Некоторые реагирующие пары и газы (НС1, HF, S02, пары неорганических кислот и др.) подвергаются химическим превращениям непосредственно в дыхательных путях, поэтому их задержка в организме происходит с более постоянной скоростью. Кроме того, они обладают способностью разрушать саму альвеолярную мембрану, нарушать ее барьерную и транспортную функции, что ведет к развитию токсического отека легких.

При многих производственных операциях образуются аэрозоли (пыль, дым, туман). Они представляют собой смесь частиц в виде минеральной пыли (угольная, силикатная и др.), окислов металлов, органических соединений и пр.

В дыхательных путях происходит два процесса: задержка и выделение поступивших частиц. На процесс задержки влияет агрегатное состояние аэрозолей и их физико-химические свойства (размер частиц, форма, гигроскопичность, заряд и пр.). В верхних дыхательных путях задерживается 80-90% частиц величиной до 10 мкм, в альвеолярную область поступает 70-90% частиц размером 1-2 мкм.и менее.

Рис. 6. Схема путей поступления ядовитых веществ через кожу (по Ю. И. Кундиеву). Объяснение в тексте.

В процессе самоочищения дыхательных путей частицы вместе с мокротой удаляются из организма. В случае поступления водорастворимых и токсических аэрозолей их резорбция может происходить по всей поверхности дыхательных путей, причем заметная часть со слюной попадает в желудок.

Существенную роль в самоочищении альвеолярной области играют макрофаги и лимфатическая система. Тем не менее аэрозоли металлов быстро проникают в ток крови или лимфы путем диффузии или транспорта в форме коллоидов, белковых комплексов и пр. При этом обнаруживается их резорбтивное действие, часто в виде так называемой литейной лихорадки.

Проникновение токсических веществ через кожу также имеет большое значение, преимущественно в производственных условиях.

Существует по крайней мере три пути такого поступления (рис. 6):

  • через эпидермис (1),
  • волосяные фолликулы (2) и
  • выводные протоки сальных желез (3).

Эпидермис рассматривается как липопротеиновый барьер, через который могут диффундировать разнообразные газы и органические вещества в количествах, пропорциональных кх коэффициентам распределения в системе липиды/вода. Это только первая фаза проникновения яда, второй фазой является транспорт этих соединений из дермы в кровь. Если предопределяющие эти процессы физико-химические свойства веществ сочетаются с их высокой токсичностью, то опасность тяжелых чрескож-ных отравлений значительно возрастает. На первом месте стоят ароматические нитроуглеводороды, хлорированные углеводороды, металлоорганические соединения.

Следует учитывать, что соли многих металлов, соединяясь с жирными кислотами и кожным салом, могут превращаться в жирорастворимые соединения и проникать через барьерный слой эпидермиса (особенно ртуть и таллий).

Механические повреждения кожи (ссадины, царапины, раны и пр.), термические и химические ожоги способствуют проникновению токсических веществ в организм.

Лужников Е. А. Клиническая токсикология, 1982

В ремонтном производстве, а иногда и в быту механизаторам приходится соприкасаться со многими техническими жидкостями, которые в разной степени оказывают вредное действие на организм. Отравляющее действие ядовитых веществ зависит от многих факторов и, прежде всего, от характера ядовитого вещества, его концентрации, продолжительности воздействия, растворимости в жидких средах организма, а также внешних условий.

Ядовитые вещества в газо-, паро- и дымообразном состоянии попадают в организм через органы дыхания с воздухом, которым дышат рабочие, находясь в загрязненной атмосфере рабочей зоны. В этом случае ядовитые вещества действуют значительно быстрее и сильнее, чем такие же вещества, попавшие в организм другими путями. С повышением температуры воздуха опасность отравления увеличивается. Поэтому летом случаи отравления бывают чаще, чем зимой. Нередко на организм действует сразу несколько ядовитых веществ, например пары бензина и окись углерода из отработавших газов карбюраторного двигателя. Некоторые же вещества повышают действие других ядовитых веществ (так, алкоголь усиливает ядовитые свойства паров бензина и т.д.).

Среди механизаторов существует неправильное мнение, что к ядовитому веществу можно привыкнуть. Мнимое привыкание организма к тому или иному веществу приводит к запоздалому принятию мер по прекращению действия ядовитого вещества. Попав в организм человека, ядовитые вещества вызывают острые или хронические отравления. Острое отравление развивается при вдыхании большого количества ядовитых веществ высокой концентрации (например, при открытии люка емкости с бензином, ацетоном и подобными жидкостями). Хроническое отравление развивается при вдыхании малых концентраций ядовитых веществ в течение нескольких часов или суток.

Наибольшее количество случаев отравления парами и туманами технических жидкостей приходится на растворители, что объясняется их летучестью или испаряемостью. Летучесть растворителей оценивают условными величинами, указывающими скорость испарения растворителей по сравнению со скоростью испарения этилового эфира, условно принимаемой за единицу (табл. 1).

По летучести растворители делятся на три группы: к первой относятся растворители с числом летучести менее 7 (легколетучие); ко второй - растворители с числом летучести от 8 до 13 (среднелетучие) и к третьей - растворители с числом летучести более 15 (медленнолетучие).

Следовательно, чем быстрее испаряется тот или иной растворитель, тем выше вероятность образования вредной для здоровья концентрации паров растворителя в воздухе и опасность отравления. Большинство растворителей испаряются при любой температуре. Однако с повышением температуры скорость испарения их значительно увеличивается. Так, например, бензин-растворитель в помещении при температуре окружающей среды 18-20°С испаряется со скоростью 400 г/ч с 1 м2. Пары многих растворителей тяжелее воздуха, поэтому самый высокий процент их содержится в нижних слоях воздуха.

На распределение паров растворителей в воздухе влияют потоки воздуха и их циркуляция. В присутствий нагретых поверхностей под воздействием конвекционных токов потоки воздуха увеличиваются, вследствие чего возрастает скорость распространения паров растворителей. В закрытых помещениях воздух значительно быстрее насыщается парами растворителей, а следовательно, и вероятность отравления возрастает. Поэтому, если в закрытом или плохо вентилируемом помещении оставить открытой тару с летучим растворителем или переливать и разливать растворитель; то окружающий воздух быстро насыщается парами и в короткое время концентрация их в воздухе станет опасной для здоровья человека.

Воздух рабочей зоны считается безопасным в том случае, если количество вредных паров в нем не превышает предельно допустимой концентрации (рабочей зоной считаются места постоянного или периодического пребывания работающих для наблюдения и ведения производственных процессов). Предельно допустимые концентрации ядовитых паров, пыли и других аэрозолей в воздухе рабочей зоны производственных помещений не должны превышать величин, указанных в «Инструкции по санитарному содержанию помещений и оборудования производственных предприятий».

Большой опасности отравления подвергаются лица, очищающие и ремонтирующие цистерны, резервуары из под бензина и других растворителей, а также работающие в местах хранения и применения технических жидкостей. В этих случаях при нарушении норм и требований техники безопасности концентрации паров ядовитых веществ в воздухе будут превосходить предельно допустимые нормы.

Приведем несколько примеров:

1. В закрытом невентилируемом складском помещении кладовщик оставил на ночь ведро с бензином-растворителем. При площади испарения бензина 0,2 м2 и скорости его испарения 400 г/ч с 1 м2 за 10 ч в парообразное состояние перейдет около 800 г бензина. Если внутренний объем складского помещения равен 1000 м3, то к утру концентрация паров бензина-растворителя в воздухе составит: 800 000 мг: 1000 м3 = 800 мг/м3 воздуха, что почти в 2,7 раза выше предельно допустимой концентрации бензина-растворителя. Поэтому перед началом работы складское помещение следует проветрить и в течение дня двери и окна держать открытыми.

2. В цехе ремонта топливной аппаратуры плунжерные пары топливных насосов промывают в бензине Б-70, налитом в моечную ванну площадью 0,8 м2. Какова же будет концентрация паров бензина в воздухе рабочего помещения к концу смены, если не сделать местный отсос от моечной ванны и не оборудовать вентиляцию? Расчеты показывают, что за 8 ч работы в парообразное состояние перейдет около 2,56 кг бензина (2 560 000 мг). Разделив полученный вес паров бензина на внутренний объем помещения 2250 м3, получим концентрацию паров бензина в воздухе 1100 мг/м3, что в 3,5 раза выше предельно допустимой концентрации бензина Б-70. Значит, в конце рабочего дня у всех работающих в этом помещении будут головная боль или другие признаки отравления. Следовательно, детали и части машин нельзя мыть в бензине, а надо применять менее ядовитые растворители и моющие средства.

Ядовитые вещества в жидком состоянии попадают в организм человека через органы пищеварения с пищей и водой, а также через кожные покровы при соприкосновении с ними и пользовании спецодеждой, смоченной этими веществами. Признаки отравления жидкими ядовитыми веществами такие же, как и при отравлении парообразными.

Попадание жидких ядовитых веществ через органы пищеварения возможно при несоблюдении личной гигиены. Нередко водитель автомобиля, опустив в бензобак резиновую трубку, засасывает бензин ртом, чтобы создать сифон и перелить бензин из бака в другую емкость. Этот безобидный прием приводит к тяжелым последствиям - отравлению или воспалению легких. Ядовитые вещества, проникая через кожные покровы, попадают в большой круг кровообращения, минуя защитный барьер, и, накапливаясь в организме, приводят к отравлению.

При работе с ацетоном, этилацетатом, бензином и подобными растворителями можно заметить, что жидкости быстро испаряются с поверхности кожи и рука белеет, т.е. жидкости растворяют кожное сало, обезжиривают и сушат кожу. На сухой коже образуются трещины, а через них проникает инфекция. При частом контакте с растворителями развиваются экземы и другие кожные заболевания. Некоторые технические жидкости при попадании на незащищенную поверхность кожного покрова приводят к химическим ожогам вплоть до обугливания пораженных участков.


Синдром нарушения сознания . Обусловлен непосредственным воздействием яда на кору головного мозга, а также вызванными им расстройствами мозгового кровообращения и кислородной недостаточностью. Такого рода явления (кома, ступор) возникают при тяжелом отравлении хлорированными углеводородами, фосфорорганическими соединениями (ФОС), спиртами, препаратами опия, снотворными.

Синдром нарушения дыхания . Часто наблюдается при коматозных состояниях, когда угнетается дыхательный центр. Расстройства акта дыхания возникают также вследствие паралича дыхательной мускулатуры, что резко осложняет течение отравлений. Тяжелые нарушения дыхательной функции наблюдаются при токсическом отеке легких и нарушениях проходимости дыхательных путей.

Синдром поражения крови . Характерен для отравлений окисью углерода, окислителями гемоглобина, гемолитическими ядами. При этом инактивируется гемоглобин, снижается кислородная емкость крови.

Синдром нарушения кровообращения . Почти всегда сопутствует острым отравлениям. Причинами расстройства функции сердечно-сосудистой системы могут быть: угнетение сосудодвигательного центра, нарушение функции надпочечниковых желез, повышение проницаемости стенок кровеносных сосудов и др.

Синдром нарушения терморегуляции . Наблюдается при многих отравлениях и проявляется или понижением температуры тела (алкоголь, снотворные, цианиды), или ее повышением (окись углерода, змеиный яд, кислоты, щелочи, ФОС). Эти сдвиги в организме, с одной стороны, являются следствием снижения обменных процессов и усиления теплоотдачи, а с другой - всасывания в кровь токсичных продуктов распада тканей, расстройства снабжения мозга кислородом, инфекционными осложнениями.

Судорожный синдром . Как правило, является показателем тяжелого или крайне тяжелого течения отравления. Приступы судорог возникают как следствие остро наступающего кислородного голодания мозга (цианиды, окись углерода) или в результате специфического действия ядов на центральные нервные структуры (этиленгликоль, хлорированные углеводороды, ФОС, стрихнин).

Синдром психических нарушений . Характерен для отравлений ядами, избирательно действующими на центральную нервную систему (алкоголь, диэтиламид лизергиновой кислоты, атропин, гашиш, тетраэтилсвинец).

Синдромы поражения печени и почек . Сопутствуют многим видам интоксикаций, при которых эти органы становятся объектами прямого воздействия ядов или страдают из-за влияния на них токсичных продуктов обмена и распада тканевых структур. Это особенно часто сопутствует отравлениям дихлорэтаном, спиртами, уксусной эссенцией, гидразином, мышьяком солями тяжелых металлов, желтым фосфором.

Синдром нарушения водно-электролитного баланса и кислотно-щелочного равновесия . При острых отравлениях является главным образом следствием расстройства функции пищеварительной и выделительной систем, а также секреторных органов. При этом возможно обезвоживание организма, извращение окислительно-восстановительных процессов в тканях, накопление недоокисленных продуктов обмена.

Доза. Концентрация. Токсичность

Как уже отмечалось, воздействуя на организм в различных количествах, одно и то же вещество вызывает неодинаковый эффект. Минимальная действующая , или пороговая, доза (концентрация) ядовитого вещества - это такое его наименьшее количество, которое вызывает явные, но обратимые изменения жизнедеятельности. Минимальная токсическая доза - это уже гораздо большее количество яда, вызывающее выраженное отравление с комплексом характерных патологических сдвигов в организме, но без смертельного исхода. Чем сильнее яд, тем ближе величины минимально действующей и минимально токсической доз. Помимо названных, в токсикологии принято еще рассматривать смертельные (летальные) дозы и концентрации ядов, т. е. те их количества, которые приводят человека (или животное) к гибели при отсутствии лечения. Летальные дозы определяются в результате опытов на животных. В экспериментальной токсикологии чаще всего пользуются средней летальной дозой (DL 50) или концентрацией (CL 50) яда, при которых погибает 50% подопытных животных. Если же наблюдается 100%-ная их гибель, то такая доза или концентрация обозначается как абсолютная летальная (DL 100 и CL 100). Понятие токсичности (ядовитости) означает меру несовместимости вещества с жизнью и определяется величиной, обратной DL 50 (CL 50), т. е. ).

В зависимости от путей поступления яда в организм определяют следующие токсикометрические параметры: мг/кг массы тела - при воздействии яда, попавшего с отравленной пищей и водой внутрь организма, а также на кожу и слизистые оболочки; мг/л или г/м 3 воздуха - при ингаляционном (т. е. через органы дыхания) проникновении яда в организм в виде газа, пара или аэрозоля; мг/см 2 поверхности - при попадании яда на кожу. Имеются способы и более углубленной количественной оценки ядовитости химических соединений. Так, при воздействии через дыхательные пути степень токсичности яда (Т) характеризует модифицированная формула Габера:

где с - концентрация яда в воздухе (мг/л); t - время воздействия (мин); ? - объем вентиляции легких (л/мин); g - масса тела (кг).

При разных способах введения ядов в организм требуются неодинаковые их количества для того, чтобы вызвать один и тот же токсический эффект. Например, DL 50 диизопропилфторфосфата, установленные на кроликах при различных способах введения, следующие (в мг/кг):


Значительное превышение пероральной дозы над парентеральными (т. е. введенными в организм, минуя желудочно-кишечный тракт) свидетельствует прежде всего о разрушении большей части яда в пищеварительной системе.

C учетом величины среднесмертельных доз (концентраций) при различных путях поступления в организм яды подразделяются на группы. Одна из таких классификаций, разработанных в нашей стране, приводится в таблице.

Классификация вредных веществ по степени токсичности (рекомендована Всесоюзной проблемной комиссией по научным основам гигиены труда и профессиональной патологии в 1970 г.)


При повторном воздействии одного и того же яда на организм может изменяться течение отравления из-за развития явлений кумуляции, сенсибилизации и привыкания. Под кумуляцией понимается накопление в организме токсичного вещества (материальная кумуляция ) или вызываемых им эффектов (функциональная кумуляция ). Понятно, что накапливается то вещество, которое медленно выводится или медленно обезвреживается, при этом суммарно действующая доза очень быстро возрастает. Что касается функциональной кумуляции, то она может проявляться тяжелыми расстройствами тогда, когда сам яд не задерживается в организме. Такое явление может наблюдаться, например, при отравлении алкоголем. Степень выраженности кумулятивных свойств ядовитых веществ принято оценивать коэффициентом кумуляции (K), который определяется в эксперименте на животных:

где а - повторно вводимое животному количество яда, составляющее 0,1–0,05 DL 50 ; b - количество введенных доз (а); с - однократно введенная доза.

В зависимости от величины коэффициента кумуляции токсичные вещества делят на 4 группы:

1) с резко выраженной кумуляцией (К<1);

2) с выраженной кумуляцией (К от 1 до 3);

3) с умеренной кумуляцией (К от 3 до 5);

4) со слабо выраженной кумуляцией (К>5).

Сенсибилизация - состояние организма, при котором повторное воздействие вещества вызывает больший эффект, чем предыдущее. В настоящее время нет единого взгляда на биологическую сущность этого явления. На основании экспериментальных данных можно полагать, что эффект сенсибилизации связан с образованием под влиянием токсичного вещества в крови и других внутренних средах измененных и ставших чужеродными для организма белковых молекул. Последние индуцируют формирование антител - особых структур белковой природы, осуществляющих защитную функцию организма. По-видимому, повторное даже значительно более слабое токсическое воздействие с последующей реакцией яда с антителами (или измененными рецепторными белковыми структурами) вызывает извращенный ответ организма в виде явлений сенсибилизации.

При повторяющемся воздействии ядов на организм можно наблюдать и обратное явление - ослабление их эффектов вследствие привыкания , или толерантности . Механизмы развития толерантности неоднозначны. Так, например, было показано, что привыкание к мышьяковистому ангидриду обусловлено возникновением под его влиянием воспалительных процессов на слизистой оболочке желудочно-кишечного тракта и уменьшением вследствие этого всасывания яда. В то же время, если препараты мышьяка вводить парентерально, толерантности не наблюдается. Однако наиболее частой причиной толерантности является стимуляция, или индукция, ядами активности ферментов, обезвреживающих их в организме. Об этом явлении пойдет еще речь впереди. А сейчас отметим, что привыкание к некоторым ядам, например ФОС, может быть еще обусловлено снижением чувствительности к ним соответствующих биоструктур или перегрузкой последних из-за массированного воздействия на них избыточного количества молекул токсичного вещества.

В связи с изложенным особое значение приобретает законодательная регламентация предельно допустимых концентраций (ПДК) вредных веществ в воздухе рабочей зоны промышленных и сельскохозяйственных предприятий, научно-исследовательских и испытательных учреждений, конструкторских бюро. Считается, что ПДК этих веществ при ежедневной восьмичасовой работе в течение всего рабочего стажа не могут вызывать у работающих заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследования непосредственно в процессе работы или в отдаленные сроки. По сравнению с другими индустриальными странами в СССР существует более строгий подход к установлению ПДК многих химических агентов. В первую очередь это относится к веществам, обладающим первоначально незаметным, но постепенно нарастающим действием. Например, в Советском Союзе приняты более низкие уровни ПДК, чем в США, для окиси углерода (20 мг/м 3 против 100 мг/м 3), паров ртути и свинца (0,01 мг/м 3 против 0,1 мг/м 3), бензола (5 мг/м 3 против 80 мг/м 3), дихлорэтана (10 мг/м 3 против 400 мг/м 3) и других токсичных веществ. В нашей стране на предприятиях и учреждениях функционируют специальные токсикологические и санитарные лаборатории, которые осуществляют строгий контроль за содержанием вредных веществ в рабочих помещениях, за внедрением новых экологически безвредных технологических процессов, за работой газопылеулавливающих установок, за сточными водами и т. д. Любой химический продукт, выпускаемый промышленностью СССР, проходит проверку на токсичность и получает токсикологическую характеристику.

Пути поступления ядов в организм

Поступление ядов в организм человека может происходить через органы дыхания, пищеварительный тракт и кожу. Огромная поверхность легочных альвеол (около 80–90 м 2) обеспечивает интенсивное всасывание и быстрый эффект действия ядовитых паров и газов, присутствующих во вдыхаемом воздухе. При этом в первую очередь легкие становятся «входными воротами» для тех из них, которые хорошо растворимы в жирах. Диффундируя через альвеолярно-капиллярную мембрану толщиною около 0,8 мкм, отделяющую воздушную сроду от кровяного русла, молекулы ядов наикратчайшим путем проникают в малый круг кровообращения и затем, минуя печень, через сердце достигают кровеносных сосудов большого круга.

С отравленной пищей, водой, а также в «чистом» виде токсичные вещества всасываются в кровь через слизистые оболочки полости рта, желудка и кишечника. Большинство из них всасывается в эпителиальные клетки пищеварительного тракта и далее в кровь по механизму простой диффузии. При этом ведущим, фактором проникновения ядов во внутренние среды организма является их растворимость в липидах (жирах), точнее - характер распределения между липидной и водной фазами в месте всасывания. Существенную роль играет также степень диссоциации ядов.

Что касается жиронерастворимых чужеродных веществ, то многие из них проникают через клеточные мембраны слизистых оболочек желудка и кишечника по порам или пространствам между мембранами. Хотя площадь пор составляет только около 0,2% всей поверхности мембраны, тем не менее это обеспечивает всасывание многих водорастворимых и гидрофильных веществ. Током крови из желудочно-кишечного тракта токсичные вещества доставляются в печень - орган, выполняющий барьерную функцию по отношению к подавляющему большинству чужеродных соединений.

Как показывают многие исследования, скорость проникновения ядов через неповрежденную кожу прямо пропорциональна их растворимости в липидах, а дальнейший их переход в кровь зависит от способности растворяться в воде. Это относится не только к жидкостям и твердым веществам, но и к газам. Последние могут диффундировать через кожу как через инертную мембрану. Таким способом, например, кожный барьер преодолевают HCN, СО 2 , СО, H 2 S и другие газы. Небезынтересно отметить, что прохождению через кожу тяжелых металлов способствует образование ими солей с жирными кислотами жирового слоя кожи.

Прежде чем оказаться в том или ином органе (ткани), находящиеся в крови яды преодолевают ряд внутренних клеточных и мембранных барьеров. Важнейшими из них являются гематоэнцефалический и плацентарный - биологические структуры, которые находятся на границе кровеносного русла, с одной стороны, и центральной нервной системой и материнским плодом - с другой. Поэтому результат действия ядов и лекарств часто зависит от того, насколько выражена их способность проникать через барьерные структуры. Так, вещества, растворимые в липидах и быстро диффундирующие через липопротеидные мембраны, например спирты, наркотические средства, многие сульфаниламидные препараты, хорошо проникают в головной и спинной мозг. Они сравнительно легко попадают в кровь плода через плаценту. В этой связи нельзя не упомянуть случаи рождения детей с признаками привыкания к наркотикам, если их матери являлись наркоманками. Пока младенец находится в утробе матери, он адаптируется к определенной дозе наркотика. В то же время отдельные чужеродные вещества плохо проникают через барьерные структуры. Особенно это относится к препаратам, образующим в организме четвертичные аммониевые основания, к сильным электролитам, некоторым антибиотикам, а также коллоидным растворам.

Превращение токсичных веществ в организме

Проникающие в организм яды, как и другие чужеродные соединения, могут подвергаться разнообразным биохимическим превращениям (биотрансформации ), в результате которых чаще всего образуются менее токсичные вещества (обезвреживание , или детоксикация ). Но известно немало случаев усиления токсичности ядов при изменении их структуры в организме. Есть и такие соединения, характерные свойства которых начинают проявляться только вследствие биотрансформации. В то же время определенная часть молекул яда выделяется из организма без каких-либо изменений или вообще остается в нем на более или менее длительный период, фиксируясь белками плазмы крови и тканей. В зависимости от прочности образующегося комплекса «яд-белок» действие яда при этом замедляется или же утрачивается совсем. Кроме того, белковая структура может быть лишь переносчиком ядовитого вещества, доставляющим его к соответствующим рецепторам.


Рис.1. Общая схема поступления, биотрансформации и выведения чужеродных веществ из организма

Изучение процессов биотрансформации позволяет решить ряд практических вопросов токсикологии. Во-первых, познание молекулярной сущности детоксикации ядов дает возможность оцепить защитные механизмы организма и на этой основе наметить пути направленного воздействия на токсический процесс. Во-вторых, о величине поступившей в организм дозы яда (лекарства) можно судить по количеству выделяющихся через почки, кишечник и легкие продуктов их превращения - метаболитов, что дает возможность контролировать состояние здоровья людей, занятых производством и применением токсичных веществ; к тому же при различных заболеваниях образование и выделение из организма многих продуктов биотрансформации чужеродных веществ существенно нарушается. В-третьих, появление ядов в организме часто сопровождается индукцией ферментов, катализирующих (ускоряющих) их превращения. Поэтому, влияя с помощью определенных веществ на активность индуцированных ферментов, можно ускорить или затормозить биохимические процессы превращений чужеродных соединений.

В настоящее время установлено, что процессы биотрансформации чужеродных веществ протекают в печени, желудочно-кишечном тракте, легких, почках (рис. 1). Кроме того, согласно результатам исследований профессора И. Д. Гадаскиной, немалое число токсичных соединений подвергается необратимым превращениям и в жировой ткани. Однако главное значение здесь имеет печень, точнее - микросомальная фракция ее клеток. Именно в клетках печени, в их эндоплазматическом ретикулуме, локализуется большинство ферментов, катализирующих превращения чужеродных веществ. Сам ретикулум представляет собой сплетение линопротеидных канальцев, пронизывающих цитоплазму (рис. 2). Наивысшая ферментативная активность связывается с так называемым гладким ретикулумом, который в отличие от шероховатого не имеет на своей поверхности рибосом. Неудивительно поэтому, что при заболеваниях печени резко повышается чувствительность организма ко многим чужеродным веществам. Надо отметить, что, хотя число микросомальных ферментов невелико, они обладают очень важным свойством - высоким сродством к различным чужеродным веществам при относительной химической неспецифичности. Это создает им возможность вступать в реакции обезвреживания практически с любым химическим соединением, попавшим во внутренние среды организма. В последнее время доказано присутствие ряда таких ферментов в других органоидах клетки (например, в митохондриях), а также в плазме крови и в микроорганизмах кишечника.


Рис. 2. Схематическое изображение клетка печени (Парк, 1373). 1 - ядро; 2 - лизосомы; 3 - эндоплазматический ретикулум; 4 - поры в ядерной оболочке; 5 - митохондрии; 6 - шероховатый зндоплазматический ретикулум; 7 - инвагинации плазматической мембраны; 8 - вакуоли; 9 - верна гликогена; 10 - гладкий эндонлазматический ретикулум

Считается, что главным принципом превращения в организме чужеродных соединений является обеспечение наибольшей скорости их выведения путем перевода из жирорастворимых в более водорастворимые химические структуры. В последние 10–15 лет при изучении сущности биохимических превращений чужеродных соединений из жирорастворимых в водорастворимые все большее значение придается так называемой монооксигеназной ферментной системе со смешанной функцией, которая содержит особый белок - цитохром Р-450. Он близок по строению к гемоглобину (в частности, содержит атомы железа с переменной валентностью) и является конечным звеном в группе окисляющих микросомальных ферментов - биотрансформаторов, сосредоточенных преимущественно в клетках печени. В организме цитохром Р-450 может находиться в 2 формах: окисленной и восстановленной. В окисленном состоянии он вначале образует с чужеродным веществом комплексное соединение, которое после этого восстанавливается специальным ферментом - цитохромредуктазой. Затем это, уже восстановленное, соединение реагирует с активированным кислородом, в результате чего образуется окисленное и, как правило, нетоксичное вещество.

В основе биотрансформации токсичных веществ лежит несколько типов химических реакций, в результате которых происходит присоединение или же отщепление метальных (-СН 3), ацетильных (СН 3 СОО-), карбоксильных (-СООН), гидроксильных (-ОН) радикалов (групп), а также атомов серы и серосодержащих группировок. Немалое значение имеют процессы распада молекул ядов вплоть до необратимой трансформации их циклических радикалов. Но особую роль среди механизмов обезвреживания ядов играют реакции синтеза , или конъюгации , в результате которых образуются нетоксичные комплексы - конъюгаты. При этом биохимическими компонентами внутренней среды организма, вступающими в необратимое взаимодействие с ядами, являются: глюкуроновая кислота (С 5 Н 9 О 5 СООН), цистеин(), глицин (NH 2 -CH 2 -CОOH),серная кислота и др. Молекулы ядов, содержащие несколько функциональных групп, могут трансформироваться посредством 2 и более метаболических реакций. Попутно отметим одно существенное обстоятельство: поскольку превращение и детоксикация ядовитых веществ за счет реакций конъюгации связаны с расходованием важных для жизнедеятельности веществ, то эти процессы могут вызвать дефицит последних в организме. Таким образом, появляется опасность другого рода - возможность развития вторичных болезненных состояний из-за нехватки необходимых метаболитов. Так, детоксикация многих чужеродных веществ находится в зависимости от запасов гликогена в печени, поскольку из него образуется глюкуроновая кислота. Поэтому при поступлении в организм больших доз веществ, обезвреживание которых осуществляется посредством образования эфиров глюкуроновой кислоты (например, бензольных производных), снижается содержание гликогена - основного легко мобилизуемого резерва углеводов. С другой стороны, есть вещества, которые под воздействием ферментов способны отщеплять молекулы глюкуроновой кислоты и тем самым способствовать обезвреживанию ядов. Одним из таких веществ оказался глицирризин, входящий в состав солодкового корня. Глицирризин содержит 2 молекулы глюкуроновой кислоты в связанном состоянии, которые освобождаются в организме, и это, по-видимому, определяет защитные свойства солодкового корня при многих отравлениях, известные издавна медицине Китая, Тибета, Японии.

Что касается выведения из организма токсичных веществ и продуктов их превращения, то в этом процессе определенную роль играют легкие, органы пищеварения, кожа, различные железы. Но наибольшее значение здесь имеют ночки. Вот почему при многих отравлениях с помощью специальных средств, усиливающих отделение мочи, добиваются быстрейшего удаления ядовитых соединений из организма. Вместе с тем приходится считаться и с повреждающим воздействием на почки некоторых выводимых с мочой ядов (например, ртути). Кроме того, в почках могут задерживаться продукты превращения токсичных веществ, как это имеет место при тяжелых отравлениях этиленгликолем. При его окислении в организме образуется щавелевая кислота и в почечных канальцах выпадают кристаллы оксалата кальция, препятствующие мочеотделению. Вообще подобные явления наблюдаются тогда, когда концентрация выводимых через почки веществ высока.

Чтобы понять биохимическую сущность процессов превращения в организме ядовитых веществ, рассмотрим несколько примеров, касающихся распространенных компонентов химического окружения современного человека.


Рис. 3. Окисление (гидроксилирование) бензола в ароматические спирты, образование конъюгатов и полное разрушения его молекулы (разрыв ароматического кольца)

Так, бензол , который, подобно другим ароматическим углеводородам, широко используется в качестве растворителя различных веществ и как промежуточный продукт при синтезе красителей, пластических масс, лекарств и других соединений, трансформируется в организме по 3 направлениям с образованием токсичных метаболитов (рис. 3). Последние выделяются через почки. Бензол может очень долго (по некоторым данным, до 10 лет) задерживаться в организме, в особенности в жировой ткани.

Определенный интерес представляет изучение процессов превращения в организме токсичных металлов , оказывающих все более широкое влияние на человека в связи с развитием науки и техники и освоением природных богатств. Прежде всего надо отметить, что в результате взаимодействия с окислительно-восстановительными буферными системами клетки, при котором осуществляется перенос электронов, валентность металлов меняется. При этом переход в состояние низшей валентности обычно связывается с уменьшением токсичности металлов. Например, ионы шестивалентного хрома переходят в организме в малотоксичную трехвалентную форму, а трехвалентный хром удается достаточно быстро удалить из организма с помощью некоторых веществ (пиросульфата натрия, виннокаменной кислоты и др.). Ряд металлов (ртуть, кадмий, медь, никель) активно связывается с биокомплексами, в первую очередь - с функциональными группировками ферментов (-SH, -NH 2 , -СООН и др.), что подчас определяет избирательность их биологического действия.

В числе ядохимикатов - веществ, предназначенных для уничтожения вредных живых существ и растений, имеются представители различных классов химических соединений, в той или иной мере токсичных для человека: хлорорганических, фосфорорганических, металлоорганических, нитрофенольных, цианистых и др. Согласно имеющимся данным, около 10% всех смертельных отравлений в настоящее время вызывается ядохимикатами. Наиболее значимыми из них, как известно, являются ФОС. Гидролизуясь, они, как правило, утрачивают токсичность. В противоположность гидролизу окисление ФОС почти всегда сопровождается усилением их токсичности. Это можно видеть, если сопоставить биотрансформацию 2 инсектицидов - диизопропилфторфосфата, который теряет токсические свойства, отщепляя при гидролизе атом фтора, и тиофоса (производное тиофосфорной кислоты), который окисляется в значительно более токсичный фосфакол (производное ортофосфорной кислоты).


Среди широко используемых лекарственных веществ снотворные препараты являются наиболее частыми источниками отравлений. Процессы их превращений в организме изучены достаточно хорошо. В частности, показано, что биотрансформация одного из распространенных производных барбитуровой кислоты - люминала (рис. 4) - протекает медленно, и это лежит в основе его достаточно длительного снотворного действия, так как оно зависит от количества неизмененных молекул люминала, контактирующих с нервными клетками. Распад барбитурового кольца приводит к прекращению действия люминала (как, впрочем, и других барбитуратов), который в лечебных дозах вызывает сон длительностью до 6 ч. В этой связи небезынтересна судьба в организме другого представителя барбитуратов - гексобарбитала. Его снотворное действие намного короче даже при применении значительно больших, чем люминала, доз. Полагают, что это зависит от большей скорости и от большего числа путей инактивации гексобарбитала в организме (образование спиртов, кетонов, деметилированных и других производных). С другой стороны, те барбитураты, которые сохраняются в организме почти в неизмененном виде, как например барбитал, оказывают более длительное снотворное действие, чем люминал. Из этого следует, что вещества, которые в неизмененном виде выводятся с мочой, могут вызвать интоксикацию, если почки не справляются с их удалением из организма.

Важно также отметить, что для понимания непредвиденного токсического эффекта при одновременном применении нескольких лекарств должное значение надо придавать ферментам, влияющим на активность комбинирующихся веществ. Так, например, лекарственный препарат физостигмин при совместном применении с новокаином делает последний весьма токсичным веществом, так как блокирует фермент (эстеразу), гидролизирующий новокаин в организме. Подобным же образом проявляет себя и эфедрин, связывая оксидазу, инактивирующую адреналин и тем самым удлиняя и усиливая действие последнего.


Рис. 4. Видоизменение люминала в организме по двум направлениям: посредством окисления и за счет распада барбитурового кольца с последующим превращением продукта окисления в конъюгат

Большую роль в биотрансформации лекарств играют процессы индукции (активации) и торможения активности микросомалыных ферментов различными чужеродными веществами. Так, этиловый алкоголь, некоторые инсектициды, никотин ускоряют инактивацию многих лекарственных препаратов. Поэтому фармакологи обращают внимание на нежелательные последствия контакта с названными веществами на фоне лекарственной терапии, при котором лечебный эффект ряда лекарств снижается. B то же время надо учитывать, что если контакт с индуктором микросомальных ферментов внезапно прекращается, то это может привести к токсическому действию лекарств и потребует уменьшения их доз.

Надо также иметь в виду, что, по данным Всемирной организации здравоохранения (ВОЗ), у 2,5% населения значительно повышен риск проявления токсичности лекарств, так как генетически обусловленный период их полураспада в плазме крови у данной группы людей в 3 раза больше среднего. При этом около трети всех описанных у человека ферментов во многих этнических группах представлены различными по своей активности вариантами. Отсюда - индивидуальные различия в реакциях па тот или иной фармакологический агент, зависящие от взаимодействия многих генетических факторов. Так, установлено, что примерно у одного на 1–2 тыс. человек резко снижена активность сывороточной холинэстеразы, которая гидролизует дитилин - средство, применяемое для расслабления скелетной мускулатуры на несколько минут при некоторых хирургических вмешательствах. У таких людей действие дитилина резко удлиняется (до 2 ч и более) и может стать источником тяжелого состояния.

Среди людей, живущих в странах Средиземноморья, в Африке и Юго-Восточной Азии, имеется генетически обусловленная недостаточность активности фермента глюкозо-6-фосфат-дегидрогеназы эритроцитов (снижение до 20% от нормы). Эта особенность делает эритроциты малоустойчивыми к ряду медикаментов: сульфаниламидам, некоторым антибиотикам, фенацетину. Вследствие распада эритроцитов у таких лиц на фоне лекарственного лечения возникают гемолитическая анемия и желтуха. Совершенно очевидно, что профилактика этих осложнений должна заключаться в предварительном определении активности соответствующих ферментов у больных.

Хотя приведенный материал лишь в общих чертах дает представление о проблеме биотрансформации токсичных веществ, он показывает, что организм человека обладает многими защитными биохимическими механизмами, которые в определенной степени предохраняют его от нежелательного воздействия этих веществ, по крайней мере - от небольших их доз. Функционирование такой сложной барьерной системы обеспечивается многочисленными ферментными cруктурами, активное влияние на которые дает возможность изменять течение процессов превращения и обезвреживания ядов. Но это уже - одна из следующих наших тем. При дальнейшем изложении мы будем еще возвращаться к рассмотрению отдельных аспектов превращения в организме некоторых токсичных веществ в той мере, в какой это необходимо для понимания молекулярных механизмов их биологического действия.

Биологические особенности организма, влияющие на токсический процесс

Какие же внутренние факторы, т. е. относящиеся к организму человека и животных как к объекту токсического воздействия, определяют возникновение, течение и последствия отравлений?

Прежде всего надо назвать видовые различия чувствительности к ядам, которые в конечном счете оказывают влияние на возможности переноса на человека экспериментальных данных, полученных в опытах на животных. Например, собаки и кролики могут переносить атропин в дозе, превосходящей в 100 раз дозу, смертельную для человека. С другой стороны, есть яды, обладающие более сильным действием на отдельные виды животных, чем на человека. К ним относится синильная кислота, окись углерода и др.

Животные, занимающие более высокое положение в эволюционном ряду, как правило, чувствительнее к большинству нейротропных, т. е. действующих преимущественно на нервную систему, химических соединений. Так, результаты опытов, приведенные К. С. Шадурским, свидетельствуют, что большие одинаковые дозы некоторых ФОС на морских свинок действуют в 4 раза сильнее, чем на мышей, и в сотни раз сильнее, чем на лягушек. В то же время к малым дозам тетраэтилсвинца - яда, также поражающего центральную нервную систему, более чувствительны крысы, чем кролики, а последние более чувствительны к эфиру, чем собаки. Можно полагать, что эти различия определяются прежде всего биологическими особенностями, присущими животным каждого вида: степенью развития отдельных систем, их компенсаторными механизмами и возможностями, а также интенсивностью и характером обменных процессов, в том числе биотрансформации чужеродных веществ. Такой подход, к примеру, позволяет биохимически оценить факт устойчивости кроликов и других животных к большим дозам атропина. Оказалось, что их кровь содержит эстеразу, которая гидролизует атропин и отсутствует у человека.

В отношении человека в практическом плане принято считать, что в целом он более чувствителен к химическим веществам, нежели теплокровные животные. В этой связи несомненный интерес представляют результаты опытов на добровольцах (врачах одного из московских медицинских институтов). Эти опыты показали, что человек в 5 раз чувствительнее морских свинок и кроликов и в 25 раз чувствительнее крыс к токсическому действию соединений серебра. К таким веществам, как мускарин, героин, атропин, морфин, человек оказался в десятки раз чувствительнее лабораторных животных. Действие же некоторых ФОС на человека и животных различалось мало.

При детальном изучении картины отравления было выявлено, что и многие признаки воздействия одного и того же вещества на особей разных видов подчас существенно разнятся. На собак, к примеру, морфий оказывает наркотическое действие, как и на человека, а у кошек это вещество вызывает сильное возбуждение и судороги. С другой стороны, бензол, вызывая у кроликов, как и у человека, угнетение кроветворной системы, у собак не приводит к таким сдвигам. Здесь надо отметить, что даже ближайшие к человеку представители животного мира - обезьяны - значительно отличаются от него по реакции на яды и лекарственные препараты. Вот почему эксперименты на животных (в том числе - высших) по изучению действия лекарств и других чужеродных веществ не всегда дают основания для определенных суждений о возможном их влиянии на организм человека.

Иной вид различий течения интоксикаций определяется особенностями пола . Изучению этого вопроса было посвящено большое количество экспериментальных и клинических наблюдений. И хотя в настоящее время не складывается впечатления, что половая чувствительность к ядам имеет какие-то общие закономерности, в общебиологическом плане принято считать, что женский организм более устойчив к действию различных вредоносных факторов внешней среды. Согласно экспериментальным данным, к воздействию окиси углерода, ртутя, свинца, наркотическим и снотворным веществам более устойчивы самки животных, в то время как самцы устойчивое самок к ФОС, никотину, стрихнину, некоторым мышьяковистым соединениям. При объяснении такого рода явлений надо учитывать по крайней мере 2 фактора. Первый - это существенные различия особей разного пола в скорости биотрансформации ядовитых веществ в клетках печени. Не следует забывать, что в итоге этих процессов в организме могут образовываться еще более токсичные соединения и именно они могут в конечном счете определять быстроту наступления, силу и последствия токсического эффекта. Вторым фактором, определяющим неодинаковое реагирование животных разного пола на одни и те же яды, надо считать биологическую специфику мужских и женских половых гормонов. Их роль в формировании устойчивости организма к вредным химическим агентам внешней среды подтверждается, например, таким фактом: у неполовозрелых особей различия в чувствительности к ядам между самцами и самками практически отсутствуют и начинают проявляться лишь при достижении ими половой зрелости. Об этом же свидетельствует и следующий пример: если самкам крыс вводить мужской половой гормон тестостерон, а самцам - женский половой гормон эстрадиол, то самки начинают реагировать на некоторые яды (например, наркотики) как самцы, и наоборот.

Клинико-гигиенические и экспериментальные данные свидетельствуют о более высокой чувствительности к ядам детей, чем взрослых , что принято объяснять своеобразием нервной и эндокринной систем детского организма, особенностями вентиляции легких, процессов всасываемости в желудочно-кишечном тракте, проницаемости барьерных структур и др. Но все же, как и для понимания причин половых различий в чувствительности к ядам, надо прежде всего иметь в виду низкую активность биотрансформационных печеночных ферментов организма ребенка, из-за чего он хуже переносит такие яды, как никотин, алкоголь, свинец, сероуглерод, а также сильнодействующие лекарства (например, стрихнин, алкалоиды опия) и многие другие вещества, которые обезвреживаются главным образом в печени. Но к некоторым токсичным химическим агентам дети (равно как и животные раннего возраста) оказываются даже более устойчивыми, чем взрослые. К примеру, в силу меньшей чувствительности к кислородному голоданию дети до 1 года более резистентны к действию окиси углерода - яду, блокирующему кислород - передающую функцию крови. К этому надо добавить, что и у разных возрастных групп животных также определяются существенные различия чувствительности по отношению ко многим токсичным веществам. Так, Г. Н. Красовский и Г. Г. Авилова в упомянутой выше работе отмечают, что молодые и новорожденные особи более чувствительны к сероуглероду и нитриту натрия, в то время как взрослые и старые - к дихлорэтану, фтору, гранозану.

Последствия воздействия ядов на организм

Уже накоплено много данных, свидетельствующих о развитии различных болезненных состояний спустя длительные сроки после воздействия на организм тех или иных ядовитых веществ. Так, в последние годы все большее значение в возникновении заболеваний сердечнососудистой системы, в частности атеросклероза, придается сероуглероду, свинцу, окиси углерода, фторидам. Особо опасным следует считать бластомогенный, т. е. вызывающий развитие опухолей, эффект некоторых веществ. Эти вещества, получившие название канцерогенов, встречаются как в воздухе промышленных предприятий, так и населенных пунктов и жилых помещений, в водоемах, почве, продуктах питания, растениях. Распространенными среди них являются полициклические ароматические углеводороды, азосоединения, ароматические амины, нитрозоамины, некоторые металлы, соединения мышьяка. Так, в недавно вышедшей в русском переводе книге американского исследователя Экхольма приводятся случаи канцерогенного действия ряда веществ на промышленных предприятиях США. Например, у людей, работающих с мышьяком на медных, свинцовых и цинковых плавильных заводах без достаточной техники безопасности, наблюдается особенно высокий процент рака легких. Жители близлежащих мест также чаще обычного болеют раком легких, по-видимому, от того, что они вдыхают рассеянный в воздухе мышьяк и другие вредные вещества, которые содержатся в выбросах этих заводов. Однако, как отмечает автор, за последние 40 лет владельцами предприятий не были введены какие-либо меры предосторожности при контакте рабочих с канцерогенными ядами. Все это в еще большей степени относится к горнякам на урановых рудниках и рабочим красильного производства.

Естественно, что для профилактики профессиональных злокачественных новообразований прежде всего необходимо изъятие канцерогенов из производства и замена их веществами, не обладающими бластомогенной активностью. Там же, где это невозможно, наиболее правильным решением, способным гарантировать безопасность их применения, является установление их ПДК. Одновременно в нашей стране ставится задача резкого ограничения содержания таких веществ в биосфере до количеств, значительно меньших ПДК. Делаются также попытки воздействия на канцерогены и токсичные продукты их превращений в организме с помощью специальных фармакологических средств.

Одним из опасных отдаленных последствий некоторых интоксикаций являются различные пороки развития и уродства, наследственные болезни и т. п., что зависит как от непосредственного влияния яда на половые железы (мутагенное действие), так и от расстройства внутриутробного развития плода. К веществам, действующим в этом направлении, токсикологи относят бензол и его производные, этиленимин, сероуглерод, свинец, марганец и другие промышленные яды, а также отдельные ядохимикаты. В этой связи должен быть назван и печально известный лекарственный препарат талидомид, который в качестве успокаивающего средства применяли в ряде западных стран беременные женщины и который стал причиной уродств для нескольких тысяч новорожденных. Еще одним примером такого рода является скандал, разыгравшийся в 1964 г. в США вокруг препарата под названием «Мер-29», который усиленно рекламировался как средство профилактики атеросклероза и сердечно-сосудистых заболеваний и которым воспользовались свыше 300 тыс. пациентов. В последующем обнаружилось, что «Мер-29» при длительном приеме приводил у многих людей к тяжелым заболеваниям кожи, облысению, снижению остроты зрения и даже слепоте. Концерн «У. Меррел и К о », производитель этого лекарства, был оштрафован на 80 тыс. долларов, в то время как за 2 года препарат «Мер-29» был продан на сумму в 12 млн. долларов. И вот спустя 16 лет, в начале 1980 г. этот концерн снова на скамье подсудимых. Ему предъявлен иск на 10 млн. долларов в качестве компенсации за многочисленные случаи уродств у новорожденных в США и Англии, матери которых принимали против тошноты на ранней стадии беременности лекарство под названием бендектин. Вопрос об опасности этого препарата впервые был поднят в медицинских кругах в начале 1978 г., однако фармацевтические предприятия продолжают производить бендектин, приносящий их хозяевам большие прибыли.

Примечания:

Саноцкий И. В. Предупреждение вредных химических воздействий на человека - комплексная задача медицины, экологии, химии и техники. - ЖВХО, 1974, № 2, с. 125–142.

Измеров Н. Ф. Научно-технический прогресс, развитие химической промышленности и задачи гигиены и токсикологии. - ЖВХО, 1974, № 2, с. 122–124.

Кириллов В. Ф. Санитарная охрана атмосферного воздуха. М.: Медицина, 1976.

Рудаки А. Касыды. - В кн.: Ирано-таджикская поэзия/ Пер. с фарси. М.: Худож. лит., 1974, с. 23. (Сер. Б-ка всемир. лит.).

(Лужников Е. А., Дагаее В. Н., Фарсов Н. Н. Основы реаниматологии при острых отравлениях. М.: Медицина, 1977.

Тиунов Л. А. Биохимические основы токсического действия. - К кн.: Основы общей промышленной токсикологии / Под ред. Н. А. Толокояцева и В. А. Филова. Л.: Медицина, 1976, с. 184–197.

Покровский А. А. Ферментный механизм некоторых интоксикаций. - Успехи биол. химии, 1962, т. 4, с. 61–81.

Тиунов Л. А. Ферменты и яды. - В кн.: Вопросы общей промышленной токсикологии / Под ред. И. В. Лазарева. Л., 1983, с. 80–85.

Локтионов С. И. Некоторые общие вопросы токсикологии. - В кн.: Неотложная помощь при острых отравлениях / Под ред. С. Н. Голикова. М.: Медицина, 1978, с. 9–10.

Грин Д., Гольдбергер Р. Молекулярные аспекты жизни. М.: Мир, 1988.

Гадаскина И. Д. Теоретическое и практическое значение изучения. превращения ядов в организме. - В кн.: Матер. науч. сессии, досвящ. 40-летию НИИ гигиены труда и проф. заболеваний. Л., 1964, с. 43–45.

Копосов Е. С. Острые отравления. - В кн.: Реаниматология. М.: Медицина, 1976, с. 222–229.

Применительно к лекарственной терапии близость этих двух показателей нередко свидетельствует о непригодности соответствующих фармакологических препаратов для лечебных целей.

Франке З. Химия отравляющих веществ / Пер. с нем. под peд. И. Л. Кнунянца и Р. Н. Стерлина. М.: Химия, 1973.

Демидов А. В. Авиационная токсикология. М.: Медицина, 1967.

Закусав В. В., Комиссаров И. В., Синюхин В. Н. Повторность действия лекарственных веществ. - В кн.: Клиническая фармакология /Под ред. В. В. Закусова. М.: Медицина, 1978, с. 52–56.

Цит. по: Хоцянов Л. К., Хухрина Е. В. Труд и здоровье в свете научно-технического прогресса. Ташкент: Медицина, 1977.

Амиров В. Н. Механизм всасываемости лекарственных веществ при приеме внутрь. - Здравоохр. Казахстана, 1972, № 10, с. 32–33.

Термином «рецептор» (или «рецепторная структура» мы будем обозначать «точку приложения» ядов: фермент, объект его каталитического воздействия (субстрат), а также белковые, липидные, мукополисахаридные и прочие тела, составляющие структуру клеток или участвующие в обмене веществ. Молекулярно-фармакологические представления о сущности этих понятий будут рассмотрены в гл. 2.

Под метаболитами принято также понимать различные биохимические продукты нормального обмена веществ (метаболизма).

Гадаскина И. Д. Жировая ткань и яды. - В кн.: Актуальные вопросы промышленной токсикологии/Под ред. Н. В. Лазарева, А. А. Голубева, Е. Т. Лыхипой. Л., 1970, с. 21–43.

Красовский Г. Н. Сравнительная чувствительность человека и лабораторных животных к действию токсических веществ. - В кн.: Общие вопросы промышленной токсикологии / Под ред. А, В. Рощина и И. В. Саноцкого. М., 1967, с. 59–62.

Красовский Г. Н., Авилова Г. Г. Видовая, половая и возрастная чувствительность к ядам. - ЖВХО, 1974, № 2, с. 159–164.

От cancer (лат. - рак), genos (греч.- рождение).

Экхольм Э. Окружающая среда и здоровье человека. М.: Прогресс, 1980.

Огрызков Н. И. Польза и вред лекарств. М.: Медицина, 1968.

Токсичность (от греч. toxikon - яд) - ядовитость, свойство некоторых химических соединений и веществ биологической природы при попадании в определенных количествах в живой организм (человека, животного и растения) вызывать нарушения его физиологических функций, в результате чего возникают симптомы отравления (интоксикации, заболевания), а при тяжелых - гибель.

Вещество (соединение), обладающее свойством токсичности, называется токсичным веществом или ядом.

Токсичность - обобщенный показатель реакции организма на действие вещества, который во многом определяется особенностями характера его токсического действия.

Под характером токсического действия веществ на организм обычно подразумевается:

o механизм токсического действия вещества;

o характер патофизиологических процессов и основных симптомов поражения, возникающих после поражения биомишеней;

o динамика развития их во времени;

o другие стороны токсического действия вещества на организм.

Среди факторов, определяющих токсичность веществ, одним из важнейших является механизм их токсического действия.

Механизм токсического действия - взаимодействие вещества с молекулярными биохимическими мишенями, что является пусковым механизмом в развитии последующих процессов интоксикации.

Взаимодействие между токсичными веществами и живым организмом имеют две фазы:

1) действие токсических веществ на организм - токсикодинамическая фаза;

2) действие организма на токсические вещества - токсикокинетическая фаза.

Токсикокинетическая фаза в свою очередь состоит из двух видов процессов:

а) процессы распределения: поглощение, транспорт, накопление и выделение токсических веществ;

б) метаболические превращения токсических веществ - биотрансформация.

Распределение веществ в организме человека зависит в основном от физико-химических свойств веществ и структуры клетки как основной единицы организма, в особенности структуры и свойств клеточных мембран.

Важным положением в действии ядов и токсинов является то, что они оказывают токсический эффект при действии на организм в малых дозах. В тканях-мишенях создаются очень низкие концентрации токсичных веществ, которые соизмеримы с концентрациями биомишеней. Высокие скорости взаимодействия ядов и токсинов с биомишенями достигаются благодаря высокому сродству к активным центрам определенных биомишеней.

Однако, прежде чем "поразить" биомишень, вещество проникает с места аппликации в систему капилляров кровеносных и лимфатических сосудов, затем разносится кровью по организму и поступает в ткани-мишени. С другой стороны, как только яд поступает в кровь и ткани внутренних органов, он претерпевает определенные превращения, которые обычно приводят к детоксикации и "расходу" вещества на так называемые неспецифические ("побочные") процессы.

Одним из важных факторов является скорость проникновения веществ через клеточно-тканевые барьеры. С одной стороны, это определяет скорости проникновения ядов через тканевые барьеры, отделяющие кровь от внешней среды, т.е. скорости поступления веществ по определенным путям проникновения в организм. С другой стороны, это определяет скорости проникновения веществ из крови в ткани-мишени через так называемые гистогематические барьеры в области стенок кровеносных капилляров тканей. Это, в свою очередь, определяет скорость накопления веществ в области молекулярных биомишеней и взаимодействия веществ с биомишенями.

В некоторых случаях скорости проникновения через клеточные барьеры определяют избирательность в действии веществ на определенные ткани и органы. Это влияет на токсичность и характер токсического действия веществ. Так, заряженные соединения плохо проникают в центральную нервную систему и обладают более выраженным периферическим действием.

В целом в действии ядов на организм принято выделять следующие основные стадии.

1. Стадия контакта с ядом и проникновения вещества в кровь.

2. Стадия транспорта вещества с места аппликации кровью к тканям-мишеням, распределения вещества по организму и метаболизма вещества в тканях внутренних органов - токсико-кинетическая стадия.

3. Стадия проникновения вещества через гистогематические барьеры (стенки капилляров и другие тканевые барьеры) и накопления в области молекулярных биомишеней.

4. Стадия взаимодействия вещества с биомишенями и возникновения нарушений биохимических и биофизических процессов на молекулярном и субклеточном уровнях - токсико-динамическая стадия.

5. Стадия функциональных расстройств организма развития патофизиологических процессов после "поражения" молекулярных биомишеней и возникновения симптомов поражения.

6. Стадия купирования основных симптомов интоксикации, угрожающих жизни пораженного, в том числе с использованием средств медицинской защиты, или стадия исходов (при отражениях смертельными токсодозами и несвоевременном использовании средств защиты возможна гибель пораженных).

Показателем токсичности вещества является доза. Доза вещества, вызывающая определенный токсический эффект, называется токсической дозой (токсодозой). Для животных и человека она определяется количеством вещества, вызывающим определенный токсический эффект. Чем меньше токсическая доза, тем выше токсичность.

Ввиду того что реакция каждого организма на одну и ту же токсодозу конкретного токсического вещества различна (индивидуальна), то и степень тяжести отравления применительно к каждому из них не будет одинаковой. Некоторые могут погибнуть, другие получат поражения различной степени тяжести или не получат их совсем. Поэтому токсодоза (D) рассматривается как случайная величина. Из теоретических и экспериментальных данных следует, что случайная величина D распределена по логарифмически нормальному закону с параметрами: D - медианное значение токсодозы и дисперсией логарифма токсодозы - . В связи с этим на практике для характеристики токсичности используют медианные значения относительной, например к массе животного, токсодозы (далее токсодоза).

Отравления, вызванные поступлением яда из окружающей человека среды, носят название экзогенных в отличие от эндогенных интоксикаций токсическими метаболитами, которые могут образовываться или накапливаться в организме при различных заболеваниях, чаще связанных с нарушением функции внутренних органов (почки, печень и др.). В токсикогенной (когда токсический агент находится в организме в дозе, способной оказывать специфическое действие) фазе отравления выделяют два основных периода: период резорбции, продолжающийся до момента достижения максимальной концентрации яда в крови, и период элиминации, от указанного момента до полного очищения крови от яда. Токсический эффект может возникнуть до или после всасывания (резорбции) яда в кровь. В первом случае он называется местным, а во втором - резорбтивным. Различают также косвенный рефлекторный эффект.

При "экзогенных" отравлениях выделяют следующие основные пути поступления яда в организм: пероральный - через рот, ингаляционный - при вдыхании токсических веществ, перкутанный (накожный, в военном деле - кожно-резорбтивный) - через незащищенные кожные покровы, инъекционный - при парентеральном введении яда, например при укусах змей и насекомых, полостной - при попадании яда в различные полости организма (прямую кишку, влагалище, наружный слуховой проход и т.п.).

Табличные значения токсодоз (кроме ингаляционного и инъекционного путей проникновения) справедливы для бесконечно большой экспозиции, т.е. для случая, когда посторонними методами не прекращается контакт токсичного вещества с организмом. Реально для проявления того или иного токсического эффекта яда должно оказаться больше, чем приведенные в таблицах токсичности. Это количество и время, в течение которого яд должен находиться, например, на кожной поверхности при резорбции, помимо токсичности, в значительной мере обусловлено скоростью всасывания яда через кожу. Так, по данным американских военных специалистов, боевое отравляющее вещество вигаз (VX), характеризуется кожно-резорбтивной токсодозой 6-7 мг на человека. Чтобы эта доза попала в организм, 200 мг капельно-жидкого VX должно быть в контакте с кожей в течение примерно 1 ч или ориентировочно 10 мг - в течение 8 ч.

Сложнее рассчитать токсодозы для токсичных веществ, заражающих атмосферу паром или тонкодисперсным аэрозолем, например, при авариях на химически опасных объектах с выбросом аварийно химически опасных веществ (АХОВ - по ГОСТ Р 22.0.05-95), которые вызывают поражение человека и животных через органы дыхания.

Прежде всего, делают допущение, что ингаляционная токсодоза прямо пропорциональна концентрации АХОВ во вдыхаемом воздухе и времени дыхания. Кроме того, необходимо учесть интенсивность дыхания, которая зависит от физической нагрузки и состояния человека или животного. В спокойном состоянии человек делает примерно 16 вдохов в минуту и, следовательно, в среднем поглощает 8-10 л/мин воздуха. При средней физической нагрузке (ускоренная ходьба, марш) потребление воздуха увеличивается до 20-30 л/мин, а при тяжелой физической нагрузке (бег, земляные работы) составляет около 60 л/мин.

Таким образом, если человек массой G (кг) вдыхает воздух с концентрацией С (мг/л) в нем АХОВ в течение времени τ (мин) при интенсивности дыхания V (л/мин), то удельная поглощенная доза АХОВ (количество АХОВ, попавшее в организм) D(мг/кг) будет равна

Немецкий химик Ф. Габер предложил упростить это выражение. Он сделал допущение, что для людей или конкретного вида животных, находящихся в одинаковых условиях, отношение V/G постоянно, тем самым его можно исключить при характеристике ингаляционной токсичности вещества, и получил выражение К=Сτ (мг · мин/л). Произведение Сτ Габер назвал коэффициентом токсичности и принял его за постоянную величину. Это произведение, хотя и не является токсодозой в строгом смысле этого слова, позволяет сравнивать различные токсичные вещества по ингаляционной токсичности. Чем оно меньше, тем более токсично вещество при ингаляционном действии. Однако при таком подходе не учитывается ряд процессов (выдыхание обратно части вещества, обезвреживание в организме и т.п.), но тем не менее произведением Сτ до сих пор пользуются для оценки ингаляционной токсичности (особенно в военном деле и гражданской обороне при расчете возможных потерь войск и населения при воздействии боевых отравляющих веществ и АХОВ). Часто это произведение даже неправильно называют токсодозой. Более правильным представляется название относительной токсичности при ингаляции. В клинической токсикологии для характеристики ингаляционной токсичности предпочтение отдается параметру в виде концентрации вещества в воздухе, которая вызывает заданный токсический эффект у подопытных животных в условиях ингаляционного воздействии при определенной экспозиции.

Относительная токсичность ОВ при ингаляции зависит от физической нагрузки на человека. Для людей, занятых тяжелой физической работой, она будет значительно меньше, чем для людей, находящихся в покое. С увеличением интенсивности дыхания возрастет и быстродействие ОВ. Например, для зарина при легочной вентиляции 10 л/мин и 40 л/мин значения LCτ 50 составляют соответственно около 0,07 мг · мин/л и 0,025 мг · мин/л. Если для вещества фосгена произведение Сτ 3,2 мг · мин/л при интенсивности дыхания 10 л/мин является среднесмертельным, то при легочной вентиляции 40 л/мин - абсолютно смертельным.

Следует заметить, что табличные значения константы Сτ справедливы для коротких экспозиций, при которых Сτ = const. При вдыхании зараженного воздуха с невысокими концентрациями в нем токсичного вещества, но в течение достаточно длительного промежутка времени значение Сτ увеличивается вследствие частичного разложения токсичного вещества в организме и неполного поглощения его легкими. Например, для синильной кислоты относительная токсичность при ингаляции LСτ 50 колеблется от 1 мг · мин/л для высоких концентраций его в воздухе до 4 мг · мин/л, когда концентрации вещества невелики. Относительная токсичность веществ при ингаляции зависит также и от физической нагрузки на человека и его возраста. Для взрослых людей она будет снижаться с увеличением физической нагрузки, а для детей - с уменьшением возраста.

Таким образом, токсическая доза, вызывающая равные по тяжести поражения, зависит от свойств вещества, пути его проникновения в организм, от вида организма и условий применения вещества.

Для веществ, проникающих в организм в жидком или аэрозольном состоянии через кожу, желудочно-кишечный тракт или через раны, поражающий эффект для каждого конкретного вида организма в стационарных условиях зависит только от количества проникшего яда, которое может выражаться в любых массовых единицах. В токсикологии количество яда обычно выражают в миллиграммах.

Токсические свойства ядов определяют экспериментальным путем на различных лабораторных животных, поэтому чаше пользуются понятием удельной токсодозы - дозы, отнесенной к единицеживой массы животного и выражаемой в милиграммах на килограмм.

Токсичность одного и того же вещества даже при проникновении в организм одним путем различна для разных видов животных, а для конкретного животного заметно различается в зависимости от способа поступления в организм. Поэтому после численного значения токсодозы в скобках принято указывать вид животного, для которого эта доза определена, и способ введения ОВ или яда. Например, запись: "зарин D смерт 0,017 мг/кг (кролики, внутривенно)" означает, что доза вещества зарин 0,017 мг/кг, введенная кролику в вену, вызывает у него смертельный исход.

Токсодозы и концентрации токсических веществ принято подразделять в зависимости от степени выраженности вызываемого ими биологического эффекта.

Основными показателями токсичности в токсикометрии промышленных ядов и в чрезвычайных ситуациях являются:

Lim ir - порог раздражающего действия на слизистые оболочки верхних дыхательных путей и глаз. Выражается количеством вещества, которое содержится в одном объеме воздуха (например, мг/м 3).

Смертельная, или летальная, доза - это количество вещества, вызывающее при попадании в организм смертельный исход с определенной вероятностью. Обычно пользуются понятиями абсолютно смертельных токсодоз, вызывающих гибель организма с вероятностью 100% (или гибель 100% пораженных), и среднесмертельных (медленносмертельных) или условно смертельных токсодоз, летальный исход от введения которых наступает у 50% пораженных. Например:

LD 50 (LD 100) - (L от лат. letalis - смертельный) среднесмертельная (смертельная) доза, вызывающая гибель 50% (100%) подопытных животных при введении вещества в желудок, в брюшную полость, на кожу (кроме ингаляции) при определенных условиях введения и конкретном сроке последующего наблюдения (обычно 2 недели). Выражается количеством вещества, отнесенным к единице массы тела животного (обычно, мг/кг);

LC 50 (LС 100) - среднесмертельная (смертельная) концентрация в воздухе, вызывающая гибель 50% (100%) подопытных животных при ингаляционном воздействии вещества при определенной экспозиции (стандартная 2-4 часа) и определенном сроке последующего наблюдения. Как правило, время экспозиции указывается дополнительно. Размерность как для Lim ir

Выводящая из строя доза - это количество вещества, вызывающее при попадании в организм выход из строя определенного процента пораженных как временно, так и со смертельным исходом. Ее обозначают ID 100 или ID 50 (от англ. incapacitate - вывести из строя).

Пороговая доза - количество вещества, вызывающее начальные признаки поражения организма с определенной вероятностью или, что-то же самое, начальные признаки поражения у определенного процента людей или животных. Пороговые токсодозы обозначают PD 100 или PD 50 (от англ. primary - начальный).

КВИО - коэффициент возможности ингаляционного отравления, представляющий собой отношение максимально достижимой концентрации токсичного вещества (С mах, мг/м 3) в воздухе при 20°С к средней смертельной концентрации вещества для мышей (КВИО = C max /LC 50). Величина безразмерная;

ПДК - предельно допустимая концентрация вещества - максимальное количество вещества в единице объема воздуха, воды и др., которое при ежедневном воздействии на организм в течение длительного времени не вызываете нем патологических изменений (отклонения в состоянии здоровья, заболевания), обнаруживаемых современными методами исследования в процессе жизни или отдаленные сроки жизни настоящего и последующих поколений. Различают ПДК рабочей зоны (ПДК р.з, мг/м 3), ПДК максимально разовая в атмосферном воздухе населенных мест (ПДК м.р, мг/м 3), ПДК среднесуточная в атмосферном воздухе населенных мест (ПДК с.с, мг/м 3), ПДК в воде водоемов различного водопользования (мг/л), ПДК (или допустимое остаточное количество) в продуктах питания (мг/кг) и др.;

ОБУВ - ориентировочный безопасный уровень воздействия максимального допустимого содержания токсичного вещества в атмосферном воздухе населенных мест, в воздухе рабочей зоны и в воде водоемов рыбохозяйственного водопользования. Различают дополнительно ОДУ - ориентировочный допустимый уровень вещества в воде водоемов хозяйственно-бытового водопользования.

В военной токсикометрии наиболее употребительны показатели относительных медианных значений среднесмертельной (LCτ 50), средневыводящей (IСτ 50), средней эффективно действующей (EСτ 50), средней пороговой (РСτ 50) токсичности при ингаляции, выражающихся обычно в мг · мин/л, а также медианных значений аналогичных по токсическому эффекту кожно-резорбтивных токсодоз LD 50 , LD 50 , ED 50 , PD 50 (мг/кг). При этом показатели токсичности при ингаляции используются также и для прогнозирования (оценки) потерь населения и производственного персонала при авариях на химически опасных объектах с выбросом широко используемых в промышленности АХОВ.

В отношении же растительных организмов вместо термина токсичность чаще применяют термин активность вещества, а в качестве меры его токсичности преимущественно используют величину CK 50 - концентрация (например, мг/л) вещества в растворе, вызывающая гибель 50% растительных организмов. На практике пользуются нормой расхода действующего (активного) вещества на единицу площади (массы, объема), обычно кг/га, при которой достигается необходимый эффект.

Министерство образования и науки Российской Федерации

Муромский институт (филиал)

федерального государственного бюджетного образовательного учреждения

высшего профессионального образования

«Владимирский государственный университет

имени Александра Григорьевича и Николая Григорьевича Столетовых»

(МИ (филиал) ВлГУ)

Кафедра техносферной безопасности

Практическое занятие №3

Методические указания к выполнению практической работы по дисциплине «Токсикология»

для студентов направления 280700.62 «Техносферная безопасность»

Пути поступления токсических веществ в организм.

Согласно варианта задания:

1. Описать механизм резорбции химического вещества через кожные покровы организма (перкутанно).

2. Описать механизм резорбции химического вещества через слизистые оболочки организма (ингаляционно).

3. Описать механизм резорбции химического вещества через слизистые оболочки организма (перорально).

Таблица 1

№ варианта

Порядковый номер вещества по ГН 2.2.5.1313-03

Примечание

Для определения полных характеристик веществ использовать данные INTERNET а

Материалы, необходимые для выполнения практической работы.

1. Пути поступления токсических химических веществ в организм

Токсические химические вещества (токсиканты) могут поступать в организм через кожные покровы (перкутанно), дыхательные пути (ингаляционно), желудочно-кишечный тракт (перорально). Поступление токсиканта из окружающей среды в кровеносную и лимфатическую системы организма называется резорбцией, а действие токсиканта при этом – резорбтивным (системным) действием. Токсические вещества могут оказывать местное действие на кожу, слизистые оболочки и при этом не поступать в кровеносную или лимфатическую системы (резорбция отсутствует). Токсиканты обладают способностью к местному и резорбтивному действиям.

Путь поступления вещества в организм определяется его агрегатным состоянием, месторасположением в окружающей среде, площадью соприкосновения с организмом. Так, вещество в форме пара имеет очень высокую вероятность всасываться в дыхательных путях, но не может попасть в организм через желудочно-кишечный тракт и кожные покровы.

Скорость и характер резорбции веществ определяется рядом факторов: особенностями организма; количеством и свойствами вещества; параметрами окружающей среды. Поэтому качественные и количественные характеристики резорбции токсиканта могут изменяться в широких пределах.

Резорбция через кожные покровы. Поверхностный роговой слой эпидермиса препятствует резорбции токсикантов. Кожа представляет собой электрически заряженную мембрану, где и осуществляется метаболизм токсических химических веществ в количестве 2-6% относительно метаболической активности печени.

Поступление веществ через кожу осуществляется тремя путями: через эпидермис; через сальные и потовые железы; через волосяные фолликулы. Для хорошо проникающих через кожу низкомолекулярных и липофильных соединений основным является трансэпидермальный путь. Медленно всасывающиеся вещества поступают трансфолликулярным и трансгландулярным путями. Напр., хорошо растворяющиеся в жирах сернистый и азотистый иприты проникают через кожу трансэпидермально.

При трансэпидермальном проникновении веществ возможно прохождение их через клетки и через межклеточные пространства. Рассматривая прохождение веществ через кожу, следует различать собственно резорбцию (поступление в кровь) и местное действие

(депонирование веществ в коже). Проникновение ксенобиотиков через кожу представляет

собой процесс пассивной диффузии. На скорость резорбции влияют площадь и локализация резорбирующей поверхности, интенсивность кровоснабжения кожи, а также свойства токсиканта. Количество вещества, проникающего через кожу, пропорционально площади контакта вещества и кожи. С увеличением площади увеличивается и количество всасываемого вещества. При действии веществ в форме аэрозоля площадь воздействия с кожей увеличивается с одновременным уменьшением диаметра частиц.

Кровоснабжение кожи меньше, чем других тканей и органов, напр., мышц. При усилении кожного кровотока увеличивается возможность токсических веществ проникать через кожные покровы. Действие раздражающих веществ, ультрафиолетовое облучение, температурное воздействие, сопровождающееся расширением сосудов, открытием анастомозов, усиливает резорбцию токсикантов.

На резорбцию влияют физико-химические свойства токсикантов, прежде всего способность растворяться в липидах (липофильность). Существует отчетливая корреляция между величиной коэффициента распределения в системе масло/вода и скоростью резорбции.

Липофильные агенты (напр., ФОС, иприты, хлорированные углеводы) легко преодолевают кожный барьер. Гидрофильные агенты, особенно заряженные молекулы, практически не проникают через кожу. В этой связи проницаемость барьера для слабых кислот и оснований существенно зависит от степени их диссоциации. Так, салициловая кислота и нейтральные молекулы алкалоидов способны к резорбции, однако анионы кислоты и катионы алкалоидов таким путем в организм не проникают. Вместе с тем проникновение в организм липофильных веществ, вообще не растворяющихся в воде, также невозможно: они депонируются в жировой смазке и эпидермисе и не захватываются кровью. Поэтому масла не проникают через кожу. Кислород, азот, диоксид углерода, сероводород, аммиак, гелий, водород способны к кожной резорбции. Увеличение парциального давления газа в воздухе ускоряет его проникновение в организм, что может приводить к тяжелым интоксикациям.

Повреждение рогового слоя эпидермиса и жировой смазки кожи кератолитическими средствами и органическими растворителями усиливает резорбцию токсикантов. Механическое повреждение кожи с образованием дефектов, особенно обширных, лишает ее барьерных свойств. Через увлажненную кожу токсиканты всасываются лучше, чем через сухую. На скорость резорбции веществ, наносимых в виде эмульсий, растворов, мазей, оказывают влияние свойства носителя (растворителя, эмульгатора, мазевой основы).

Резорбция через слизистые оболочки. Слизистые оболочки не имеют рогового слоя и жировой пленки на поверхности. Они покрыты водной пленкой, через которую вещества легко проникают в ткани организма. Резорбция веществ через слизистые определяется главным образом следующими факторами:

а) агрегатным состоянием вещества (газ, аэрозоль, взвесь, раствор);

б) дозой и концентрацией токсиканта;

в) видом слизистой оболочки, ее толщиной;

г) продолжительностью контакта;

д) интенсивностью кровоснабжения анатомической структуры;

е) дополнительными факторами (параметры среды, степень наполнения желудка).

Большая площадь поверхности, малая толщина слизистых и хорошее кровоснабжение делают наиболее вероятным проникновение веществ через органы дыхания и стенку тонкой кишки.

Многие токсиканты достаточно быстро всасываются уже в ротовой полости . Эпителий полости рта не представляет собой значительной преграды на пути ксенобиотиков. В резорбции участвуют все отделы ротовой полости. Проникать через слизистые могут лишь вещества, находящиеся в полости рта в молекулярной форме. Поэтому растворы лучше резорбируются, чем взвеси. Раствор обволакивает всю поверхность слизистой ротовой полости, покрывая ее пленкой, которая содержит токсические вещества. Кровь, оттекающая от слизистой полости рта, поступает в верхнюю полую вену, и поэтому вещество попадает непосредственно в сердце, в малый круг кровообращения, а затем и в общий кровоток. В отличие от других способов проникновения через слизистые желудочно-кишечного тракта, при резорбции в ротовой полости всосавшиеся токсиканты распределяются в организме, минуя печень, что влияет на биологическую активность быстро разрушающихся соединений.

В основе резорбции веществ в желудке – механизмы простой диффузии. Фактор, определяющий особенности желудка, – кислотность желудочного содержимого. Скорость диффузии определяется коэффициентом распределения веществ в системе масло/вода. Жирорастворимые (или растворимые в неполярных органических растворителях) соединения достаточно легко проникают через слизистую желудка в кровь.

Особенностью резорбции в желудке является то, что она осуществляется из среды с низким значением рН. В этой связи эпителий слизистой формирует своего рода липидный барьер между водными фазами: кислой (кислотность желудочного сока примерно равна 1) и щелочной (рН крови равен 7,4). Этот барьер токсиканты могут преодолеть лишь в форме незаряженных молекул. Многие соединения не способны к диссоциации в водных растворах (неэлектролиты), их молекулы не несут заряда, и они легко проходят через слизистую желудка (дихлорэтан, четыреххлористый углерод). Сильные кислоты и щелочи (серная, соляная, азотная кислоты, NaOH, KOH) в любом растворе полностью диссоциированы и потому переходят в кровь лишь в случае разрушения слизистой оболочки (химический ожог).

Для слабых кислот кислая среда способствует превращению вещества в неионизированную форму, для слабых оснований низкие значения рН (высокие концентрации водородных ионов в среде) способствуют превращению веществ в ионизированную форму.

Неионизированные молекулы более липофильны, они легче проникают через биологический барьер. Поэтому в желудке лучше абсорбируются слабые кислоты.

Необходимое условие резорбции вещества в желудке – его растворимость в желудочном соке. Поэтому не растворимые в воде вещества в желудке не всасываются. Взвеси химических соединений перед всасыванием должны перейти в раствор. Поскольку время нахождения в желудке ограниченно, взвеси действуют слабее, чем растворы того же вещества.

Если токсикант поступает в желудок с пищей, возможно взаимодействие с ее компонентами: растворение в жирах и воде, абсорбция белками. Величина концентрации ксенобиотика при этом снижается, уменьшается и скорость диффузии в кровь. Из пустого желудка вещества всасываются лучше, чем из наполненного.

Резорбция в кишечнике. Кишечник – одно из основных мест всасывания химических веществ. Здесь действует механизм пассивной диффузии веществ через эпителий. Пассивная диффузия в кишечнике – это дозо-зависимый процесс. При увеличении содержания токсиканта в кишечнике увеличивается и скорость его всасывания. Через слизистые кишечника проникают ионы слабых кислот и оснований, что обусловлено диффузией их через поры биологических мембран.

Скорость диффузии веществ через слизистую оболочку тонкой кишки пропорциональна величине коэффициента распределения в системе масло/вода. Вещества, не растворимые в липидах, даже в форме незаряженных молекул не проникают через слизистую кишечника. Так, ксилоза – низкомолекулярное соединение, относящееся к группе неэлектролитов, но не растворимое в липидах, – практически не поступает во внутренние среды организма при приеме через рот. Токсические вещества, хорошо растворяющиеся в жирах, не всасываются в кишечнике из-за их низкой растворимости в воде. С увеличением молекулярной массы проникновение химических соединений через слизистую кишечника уменьшается. Трехвалентные ионы вообще не всасываются в кишечнике.

С наивысшей скоростью всасывание происходит в тонкой кишке. Холодные растворы быстрее покидают желудок. В этой связи холодные растворы токсикантов порой оказываются более токсичными, чем теплые. Резорбция в толстой кишке происходит сравнительно медленно. Этому способствует не только меньшая площадь поверхности слизистой этого отдела, но и более низкая концентрация токсикантов в просвете кишки.

Кишечник имеет разветвленную сеть кровеносных сосудов, поэтому вещества, проникающие через слизистую оболочку, быстро уносятся оттекающей кровью. Содержимое толстой кишки может выступать в качестве инертного наполнителя, в который включено вещество и из которого замедляется его резорбция; при этом количество всасывающегося вещества остается неизменным.

Желчные кислоты, обладая свойствами эмульгаторов, способствуют всасыванию жиров. Микрофлора кишечника может вызвать химическую модификацию молекул токсикантов, – напр., способствует восстановлению нитратов до нитритов у грудных детей. Ионы этих нитритов проникают в кровь и вызывают образование метгемоглобина. Кишечная палочка содержит ферменты, под влиянием которых в кишечнике расщепляются глюкурониды. Конъюгаты ксенобиотиков с глюкуроновой кислотой (конечные метаболиты веществ, выделяющиеся в кишечник с желчью) плохо растворимы в жирах и хорошо растворимы в воде соединения. После отщепления глюкуроновой кислоты липофильность отделившихся молекул существенно возрастает, и они приобретают способность к обратной резорбции в кровоток. Этот процесс – основа феномена печеночно-кишечной циркуляции токсиканта.

Резорбция в легких. Кислород и другие газообразные вещества при выдыхании проникают через легкие в кровоток через тонкий капиллярно-альвеолярный барьер. Благоприятное условие всасывания веществ – большая площадь поверхности легких, составляющая у человека в среднем 70 м2. Продвижение газов по дыхательным путям сопряжено с их частичной адсорбцией на поверхности трахеи и бронхов. Чем хуже растворяется вещество в воде, тем глубже оно проникает в легкие. Ингаляционно в организм могут поступать не только газы и пары, но и аэрозоли, которые также достаточно быстро всасываются в кровь.

Процесс проникновения и распределения газов в организме представлен в виде нескольких последовательных этапов:

    ингалируемый газ поступает через носоглотку и трахеи в альвеолы легких;

    путем диффузии попадает в кровь и растворяется в ней;

    током крови разносится по организму;

    путем диффузии проникает в межклеточную жидкость и клетки тканей.

Для резорбции вдыхаемый газ должен вступить в контакт с альвеолярной поверхностью легких. Альвеолы расположены глубоко в легочной ткани, поэтому путем простой диффузии газ не сможет быстро преодолеть расстояние от полости носа или ротового отверстия до их стенок. У человека и других позвоночных, дышащих легкими, есть механизм, с помощью которого осуществляется механическое перемешивание (конвекция) газов в дыхательных путях и легких и обеспечивается постоянный обмен газами между внешней средой и организмом. Этот механизм вентиляции легких – последовательно сменяющие друг друга акты вдоха и выдоха.

Вентиляция легких обеспечивает быструю доставку газа из окружающей среды к поверхности альвеолярных мембран. Одновременно с вентиляцией легких осуществляются растворение газа в стенке альвеолы, диффузия его в кровь, конвекция в кровяном русле, диффузия в ткани. При снижении парциального давления газа в альвеолярном воздухе относительно крови газ из организма устремляется в просвет альвеол и удаляется во внешнюю среду. С помощью форсированной вентиляции легких можно быстро снизить концентрацию газообразного вещества в крови и тканях. Эту возможность используют для помощи отравленным газообразными или летучими веществами, вводя им карбоген (воздух с повышенным содержанием углекислого газа), который стимулирует вентиляцию легких, воздействуя на дыхательный центр головного мозга.

Из альвеолы в кровоток газ переходит посредством диффузии. При этом молекула соединения перемещается из газообразной среды в жидкую фазу. Поступление вещества зависит от следующих факторов: растворимости газа в крови; градиента концентрации газа между альвеолярным воздухом и кровью; интенсивности кровотока и состояния легочной ткани.

Растворимость в крови отличается от растворимости в воде, что связано с наличием растворенных в плазме крови ее составных частей (соли, липиды, углеводы, белки) и форменных элементов (лейкоциты, эритроциты). Повышение температуры снижает растворимость газов в жидкостях. Количество газа, растворенного в жидкости, всегда пропорционально величине его парциального давления.

При резорбции газов в кровь большую роль играет интенсивность легочного кровотока. Она идентична минутному объему сердечного выброса. Чем выше минутный объем, тем больше крови в единицу времени попадает в альвеолярные капилляры, тем больше газа уносится оттекающей от легких кровью и переносится к тканям, тем быстрее устанавливается равновесие в системе распределения газа между средой и тканями. Стенка капилляра в норме не представляет собой существенного препятствия для диффундирующих газов. Проникновение газов в кровь затруднено только в патологически измененных легких (отек, клеточная инфильтрация альвеолярно-капиллярного барьера).

Кровь, насыщенная в легких газом, распространяется по организму. Вследствие более высокого содержания в крови молекулы газа диффундируют в ткани. Кровь, освободившаяся от газа, возвращается к легким. Этот процесс повторяется, пока парциальное давление газа в тканях не выравняется с давлением в крови, а давление в крови – с давлением в алвеолярном воздухе (состояние равновесия).

Диффузия газов в ткани определяется: растворимостью газов в тканях, разницей концентрации газа в крови и тканях и интенсивностью кровоснабжения тканей. Эпителий дыхательного тракта и стенки капиллярного русла обладают проницаемостью пористой мембраны. Поэтому жирорастворимые вещества резорбируются быстро, а растворимые в воде – в зависимости от размеров их молекул. Насыщение веществ, проникающих через альвеолярно-капиллярный барьер, не наступает. Через барьер проникают даже крупные белковые молекулы, – напр., инсулина, ботулотоксина.

Проникновение токсикантов через слизистую глаз определяется физико-химическими свойствами вещества (растворимостью в липидах и воде, зарядом и размерами молекулы).

Липидный барьер роговицы глаза представляет собой тонкую структуру многослойного плоского эпителия, покрытого снаружи роговым слоем. Через этот барьер легко проникают жирорастворимые вещества и даже растворимые в воде соединения. При попадании токсиканта на роговицу большая его часть смывается слезами и распространяется по поверхности склеры и конъюнктивы глаз. Около 50% нанесенного на роговицу вещества удаляется в течение 30 сек., и более 85% – в течение 3-6 мин.

Резорбция из тканей. При действии веществ на раневые поверхности или введении в ткань (напр., подкожно или внутримышечно) возможно их поступление либо непосредственно в кровь, либо сперва в ткани, а уже затем в кровь. При этом в ткань могут проникать высокомолекулярные (белковые), водорастворимые и даже ионизированные молекулы. Создающийся градиент концентрации токсиканта между местом аппликации, окружающей тканью и кровью – движущая сила резорбции вещества в кровь и внутренние среды организма. Скорость резорбции определяется свойствами тканей и токсических веществ.

Свойства тканей. Стенка капилляра представляет собой пористую мембрану. Ее толщина в различных тканях колеблется от 0,1 до 1 мкм. Для капилляров большинства тканей человека характерны поры диаметром около 2 нм. Поверхность, занятая порами, составляет около 0,1% площади капиллярного русла. Поры представляют собой промежутки между эндотелиальными клетками. Поры делают мембрану капилляра проницаемой для водорастворимых веществ (в ограниченном количестве встречаются поры и с большим диаметром – до 80 нм). Кроме того, возможен перенос веществ через стенку капилляра через механизм пиноцитоза (образование везикул на мембране рецептора).

Стенки капилляров мышц млекопитающих имеют поры диаметром 3-4 нм, поэтому они непроницаемы для гемоглобина (r = 3,2 нм) и сывороточных альбуминов (r = 3,5 нм), но проницаемы для таких веществ как инулин (r = 1,5 нм) и миоглобин (r = 2 нм). В этой связи проникновение очень многих ксенобиотиков в кровь возможно при их введении в мышцы.

Капиллярная и лимфатическая системы. Сеть капилляров и лимфатических сосудов хорошо развита в подкожной клетчатке и в межмышечной соединительной ткани. Площадь поверхности капиллярного русла в объеме тканей оценивается по-разному. Для мышц ее величина составляет 7000-80000 см2/100 г ткани. Степень развития капиллярной сети ограничивает скорость резорбции ксенобиотика в ткани.

Время пребывания крови в капиллярах в процессе кровообращения составляет примерно 25 сек., в то время как оборот объема циркулирующей крови реализуется за 1 мин. Это считают причиной того, что степень резорбции вещества из ткани в кровь пропорциональна степени вазкуляризации тканей. Резорбция веществ из подкожной клетчатки в основном осуществляется через капилляры и в значительно меньшей степени – через лимфатические сосуды.

Для кровоснабжения тканей имеют значение процент раскрытых, функционирующих капилляров, а также величина давления крови в тканях. Интенсивность кровотока зависит от сердечной деятельности, а в тканях она регулируется вазоактивными факторами. Эндогенные регуляторы – адреналин, норадреналин, ацетилхолин, серотонин, оксид азота, эндотелий – зависимые релаксирующие факторы, простогландины влияют на скорость кровотока в ткани и следовательно на резорбцию токсических веществ. Охлаждение конечности замедляют в ней кровоток, нагревание – ускоряет его.