Смачивание твердых тел жидкостью. Смачивание твердого тела жидкостью Жидкость смачивает твердое тело если

Смачивание или несмачивание поверхности твердого тела жидкостью также относится к поверхностным явлениям. При нанесении капли жидкости на твердую поверхность между молекулами жидкости и твердого тела возникают силы притяжения. Если эти силы притяжения больше, чем силы притяжения между молекулами жидкости, то капля жидкости растечется по поверхности, т.е. жидкость смачивает твердое тело. Если силы притяжения между молекулами жидкости больше, чем между молекулами жидкости и твердого тела, то жидкость не смачивает поверхность.

От степени смачивания (несмачивания) зависит форма капли. Угол, который образует капля жидкости с поверхностью, называется краевым углом смачивания. В зависимости от значений угла смачивания различают три основных вида смачивания.

1.Несмачивание (плохое смачивание) – краевой угол тупой, например, вода на тефлоне.

2.Смачивание (ограниченное смачивание) – краевой угол острый, например, вода на металле, покрытом оксидной пленкой.

3.Полное смачивание. Краевой угол не устанавливается, капля растекается в тонкую пленку, например, ртуть на поверхности свинца, очищенной от оксидной пленки.

Поверхность, которая смачивается водой, называется гидрофильной .

К веществам с гидрофильной поверхностью относятся алмаз, кварц, стекло, целлюлоза, металлы. Поверхности, смачиваемые неполярными жидкостями, являются гидрофобными , или олефильными. К ним относят поверхности графита, талька, серы, парафина, тефлона.

Поверхности можно искусственно придать свойство смачиваться какой-либо жидкостью. Например, для улучшения смачивания жирной поверхности водой к воде добавляют ПАВ. А для придания водоотталкивающих свойств смазывают маслом. Например, если поверхность стола смазать слоем растительного масла, то тесто не будет прилипать к столу. Этим и пользуются профессиональные кондитеры и пекари.

Смачивание играет важную роль при обогащении руд методом фтотации. Сущность этого процесса заключается в тосм, что мелко раздробленную руду, содержащую пустую породу, смачивают водой и добавляют ПАВ. Через полученную взвесь продувают воздух. Образующаяся при этом пена увлекает вверх не смачиваемые водой частицы ценного минерала, а смачиваемая водой пустая порода (песок) под действием силы тяжести оседает на дно.

Фтотацию применяют и в пищевой промышленности, например, крахмалопаточной. Основным сырьем для получения крахмала служит кукурузное зерно, содержащее, кроме крахмала, белок и жир. При пропускании через суспензию пузырьков воздуха частицы белка прилипают к ним и всплывают, образуя на поверхности легко удаляемую пену, а зерна крахмала оседают на дно.

Большое значение имеет смачивание при механической обработке материалов – резании, сверлении и шлифовке. Твердые тела пронизаны трещинами различной толщины. Под влиянием внешних нагрузок эти трещины расширяются и тело разрушается. При снятии нагрузки трещины могут «захлопываться». При механической обработке твердого тела в жидкости, смачивающей его, жидкость, попадая в микротрещины, препятствует их закрыванию. Поэтому разрушение твердых тел в жидкости

Идет легче, чем на воздухе.

Из практики известно, что капля воды растекается на стекле и принимает форму, изображенную на рис. 98, в то время как ртуть на той же поверхности превращается в несколько сплюснутую каплю (рис. 99). В первом случае говорят, что жидкость смачивает твердую поверхность, во втором - не смачивает ее. Смачивание зависит от характера сил, действующих между молекулами поверхностных слоев соприкасающихся сред. Для смачивающей жидкости силы притяжения между молекулами жидкости и твердого тела больше, чем между молекулами самой жидкости, и жидкость стремится увеличить поверхность соприкосновения с твердым телом. Для несмачивающей жидкости силы притяжения между молекулами жидкости и твердого тела меньше, чем между молекулами жидкости, и жидкость стремится уменьшить поверхность своего соприкосновения с твердым телом.

Рис. 98 Рис. 99

К линии соприкосновения трех сред (точка О есть ее пересечение с плоскостью чертежа) приложены три силы поверхностного натяжения, которые направлены по касательной внутрь поверхности соприкосновения соответствующих двух сред (рис. 98 и 99). Эти силы, отнесенные к единице длины линии соприкосновения, равны соответствующим поверхностным натяжениям s 12 , s 13 , s 23 . Угол qмежду касательными к поверхности жидкости и твердого тела называется краевым углом. Условием равновесия капли (рис. 98) является равенство нулю суммы проекций сил поверхностного натяжения на направление касательной к поверхности твердого тела, т. е.

Из условия (67.1) вытекает, что краевой угол может быть острым или тупым в зависимости от значений ×s 13 и s 12 . Если s 13 > s 12 , то cos q > 0 и угол q- острый (рис. 98), т. е. жидкость смачивает твердую поверхность. Если s 13 < s 12 , то cos q < 0 и угол q- тупой (рис. 99), т. е. жидкость не смачивает твердую поверхность. Краевой угол удовлетворяет условию (67.1), если

Если условие (67.2) не выполняется, то капля жидкости 2 ни при каких значениях qне может находиться в равновесии. Если s 13 > s 12 + s 23 , то жидкость растекается по поверхности твердого тела, покрывая его тонкой пленкой (например, керосин на поверхности стекла), - имеет место полное смачивание (в данном случае q = 0). Если s 12 > s 13 + s 23 , то жидкость стягивается в шаровую каплю, в пределе имея с ней лишь одну точку соприкосновения (например, капля воды на поверхности парафина), - имеет место полное иесмачнвавяе (в данном случае q = p).

Смачивание и несмачивание являются понятиями относительными, т. е. жидкость, смачивающая одну твердую поверхность, не смачивает другую. Например, вода смачивает стекло, но не смачивает парафин; ртуть не смачивает стекло, но смачивает чистые поверхности металлов.

Явления смачивания и несмачивания имеют большое значение в технике. Напри мер, в методе флотационного обогащения руды (отделение руды от пустой породы) ее, мелко раздробленную, взбалтывают в жидкости, смачивающей пустую породу и не смачивающей руду. Через эту смесь продувается воздух, а затем она отстаивается. При этом смоченные жидкостью частицы породы опускаются на дно, а крупинки минералов «прилипают» к пузырькам воздуха и всплывают на поверхность жидкости. При механической обработке металлов их смачивают специальными жидкостями, что облегчает и ускоряет обработку.

На границе раздела жидкости с твердым телом возникают явления смачивания или несмачивания, обусловленные взаимодействием молекул жидкости с молекулами твердого тела:


Рис.1 Явления смачивания (а) и несмачивания (б) жидкостью поверхности твердого тела (— краевой угол)

Так как явления смачивания и несмачивания определяются относительными свойствами веществ жидкости и твердого тела, одна и та же жидкость может быть смачивающей для одного твердого тела и несмачивающей для другого. Например, вода смачивает стекло и не смачивает парафин.

Количественной мерой смачивания является краевой угол угол, образуемый поверхностью твердого тела и касательной, проведенной к поверхности жидкости в точке соприкосновения (жидкость находится внутри угла).

При смачивании и чем меньше угол тем сильнее смачивание. Если краевой угол равен нулю, смачивание называют полным или идеальным . К случаю идеального смачивания можно приближенно отнести растекание спирта по чистой поверхности стекла. В этом случае жидкость растекается по поверхности твердого тела до тех пор, пока не покроет всю поверхность.

При несмачивании и чем угол , тем сильнее несмачивание. При значении краевого угла наблюдается полное несмачивание. В этом случае жидкость не прилипает к поверхности твердого тела и легко скатывается с нее. Подобное явление можно наблюдать, когда мы пытаемся вымыть жирную поверхность холодной водой. Моющие свойства мыла и синтетических порошков объясняются тем, что мыльный раствор имеет меньшее поверхностное натяжение, чем вода. Большое поверхностное натяжение воды мешает ей проникать в мелкие поры и промежутки между волокнами ткани.

Явления смачивания и несмачивания играют важную роль в жизни человека. При таких производственных процессах, как склеивание, покраска, пайка очень важно обеспечить смачивание поверхностей. В то время, как обеспечение несмачивания очень важно при создании гидроизоляции, синтезе непромокаемых материалов. В медицине явления смачивания важны для обеспечения движения крови по капиллярам, дыхания и других биологических процессов.

Явления смачивания и несмачивания ярко проявляются в узких трубках - капиллярах .

Капиллярные явления

ОПРЕДЕЛЕНИЕ

Капиллярные явления - это подъем или опускание жидкости в капиллярах по сравнению с уровнем жидкости в широких трубках.

Смачивающая жидкость поднимается по капилляру. Жидкость, не смачивающая стенки сосуда, опускается в капилляре.

Высота h поднятия жидкости по капилляру определяется соотношением:

где коэффициент поверхностного натяжения жидкости; плотность жидкости; радиус капилляра, ускорение свободного падения.

Глубина , на которую опускается жидкость в капилляре, вычисляется по той же формуле.

ОПРЕДЕЛЕНИЕ

Изогнутую поверхность жидкости называют мениском .

Под вогнутым мениском смачивающей жидкости давление меньше, чем под плоской поверхностью. Поэтому жидкость в капилляре поднимается до тех пор. пока гидростатическое давление поднятой в капилляре жидкости на уровне плоской поверхности не скомпенсирует разность давлений. Под выпуклым мениском несмачивающей жидкости давление больше, чем под плоской поверхностью, это приводит к опусканию жидкости в капилляре.

Капиллярные явления мы можем наблюдать и в природе, и в быту. Например, почва имеет рыхлое строение и между ее отдельными частицами находятся промежутки, представляющие собой капилляры. При поливе по капиллярам вода поднимается к корневой системе растений, снабжая их влагой. Также находящаяся в почве вода, поднимаясь по капиллярам. испаряется. Чтобы уменьшить эффективность испарения, тем самым сократив потери влаги, почву разрыхляют, разрушая капилляры. В быту капиллярные явления используются при промокании влажной поверхности бумажным полотенцем или салфеткой.

Примеры решения задач

ПРИМЕР 1

Задание В капиллярной трубке радиусом 0,5 мм жидкость поднялась на 11 мм. Найти плотность данной жидкости, если ее коэффициент поверхностного натяжения .
Решение

откуда плотность жидкости:

Переведем единицы в систему СИ: радиус трубки ; высота поднятия жидкости ; коэффициент поверхностного натяжения жидкости .

Ускорение свободного падения .

Вычислим:

Ответ Плотность жидкости

ПРИМЕР 2

Задание Найти массу воды, поднявшейся по капиллярной трубке диаметром 0,5 мм.
Решение Высота поднятия жидкости по капилляру определяется формулой:

Плотность жидкости:

Объем столба жидкости, поднявшейся по капилляру, считаем как объем цилиндра с высотой и площадью основания :

подставив соотношение для объема столба жидкости в формулу для плотности жидкости, получим:

С учетом последнего соотношения, а также того, что радиус капилляра , высота поднятия жидкости по капилляру:

Из последнего соотношения находим массу жидкости:

Переведем единицы в систему СИ: диаметр трубки .

Ускорение свободного падения .

Коэффициент поверхностного натяжения воды .

Вычислим:

Ответ Масса воды, поднявшейся по капиллярной трубке кг.
  • При рассмотрении молекулярной картины поверхностного слоя жидкости мы отмечали, что молекулы жидкости, расположенные на поверхности, разделяющей жидкость и газ {воздух или пар этой жидкости), почти не притягиваются молекулами газа {концентрация молекул газа слишком мала). Если жидкость граничит с твердым телом, то результат получается иным.

Явления на границе жидкость - твердое тело

На границе жидкость - твердое тело уже нельзя не считаться с силами притяжения между молекулами жидкости и молекулами твердого тела. Более того, в ряде случаев сила притяжения между молекулами жидкости и твердого тела оказывается больше силы притяжения между молекулами самой жидкости. В этом случае про жидкость говорят, что она смачивает твердое тело. Если силы притяжения между молекулами жидкости больше сил притяжения молекул твердого тела и молекул жидкости, то такая жидкость называется несмачивающей.

Так, стекло смачивается водой, но не смачивается ртутью. Значит, сила притяжения между молекулами воды и молекулами стекла больше силы притяжения молекул воды. В случае ртути и стекла силы притяжения между молекулами ртути и стекла малы по сравнению с силами притяжения между молекулами ртути.

Это подтверждает следующий опыт. Подвесим на чашке весов с укороченным подвесом чистую стеклянную пластинку и подведем под нее снизу сосуд с водой. Соприкасаясь с водой, пластинка смачивается и удерживается ею. Чтобы оторвать пластинку от воды, надо на другую чашку весов положить небольшой груз (рис. 7.14, а).

Рис. 7.14

Нижняя часть оторвавшейся пластинки оказывается покрытой водой (рис. 7.14, б). Это доказывает, что разрыв произошел не между поверхностями пластинки и воды, а между слоями воды. Следовательно, сила притяжения молекул стекла и молекул воды больше силы притяжения молекул воды друг к другу.

Если мы приведем ту же стеклянную пластинку в соприкосновение не с водой, а со ртутью, то при этом нижняя часть пластинки останется чистой (рис. 7.14, в). Это означает, что взаимодействие между молекулами ртути сильнее, чем взаимодействие между молекулами стекла и ртути. Здесь можно привести аналогию с растягиваемой цепью, которая рвется там, где у нее самое слабое звено.

Отличить смачивающую жидкость от несмачивающей очень просто. Для этого достаточно нанести каплю жидкости на поверхность твердого тела. Если жидкость смачивает тело, то капля растекается по поверхности, несмачивающая жидкость не растекается (рис, 7.15).

Рис. 7.15

Мениск

Форма поверхности жидкости в том месте, где она соприкасается с твердой стенкой и газом, зависит от того, смачивает или не смачивает жидкость стенки сосуда. Если жидкость является смачивающей, то угол Θ между касательной к поверхности жидкости и твердым телом на общей границе трех сред, отсчитываемый внутрь жидкости (краевой угол), острый (рис. 7.16, а). В том случае, когда жидкость не смачивает твердое тело, краевой угол Θ тупой (рис. 7.16, б). В случае полного смачивания Θ = 0°, а полного несмачивания - Θ = 180°.

Рис. 7.16

Только удаленная от стенок сосуда часть поверхности жидкости горизонтальна. Сближая противоположные стенки (беря более узкий сосуд), мы будем сокращать горизонтальную часть свободной поверхности жидкости (рис. 7.17, а, б), пока наконец она не исчезнет совсем (рис. 7.17, в). Поверхность жидкости становится изогнутой. Изогнутая поверхность жидкости называется мениском (от греческого слова menisos - лунный серп).

Рис. 7.17

В узких трубках смачивающие жидкости имеют вогнутый мениск (см. рис. 7.17, в), несмачивающие - выпуклый (рис. 7.18).

Рис. 7.18

В узких трубках при полном смачивании (или несмачивании) мениск жидкости представляет собой полусферу, радиус которой равен радиусу г канала трубки. Если смачивание (или несмачивание) неполное, то мениск жидкости в узких трубках также принимают за часть сферы, радиус которой R связан с радиусом трубки соотношением r = R cos Θ (рис. 7.19).

Рис. 7.19

Значение смачивания

Смачивание имеет важное значение в промышленности и быту. Хорошее смачивание необходимо при крашении и стирке, обработке фотографических материалов, нанесении лакокрасочных покрытий и др.

Моющие свойства мыла и синтетических порошков объясняются тем, что мыльный раствор имеет меньшее поверхностное натяжение, чем вода. Большое поверхностное натяжение воды мешает ей проникать в промежутки между волокнами ткани и в мелкие поры.

Существенно еще одно обстоятельство. Молекулы мыла имеют продолговатую форму. Один из концов имеет «сродство» к воде и погружается в воду. Другой конец отталкивается от воды и присоединяется к молекулам жира. Молекулы воды обволакивают частицы жира и способствуют их вымыванию.

Склеивание деревянных, кожаных, резиновых и других материалов также пример использования свойства смачивания. Пайка тоже связана со свойствами смачивания и несмачивания. Чтобы расплавленный припой (например, сплав олова со свинцом) хорошо растекался по поверхностям спаиваемых металлических предметов и прилипал к ним, надо эти поверхности тщательно очищать от жира, пыли, оксидов. Оловянным припоем хорошо можно паять детали из меди, латуни. Но алюминий не смачивается оловянным припоем. Для пайки алюминиевых изделий применяют специальный припой, состоящий из алюминия и кремния.

Важный пример применения явления смачивания и несмачивания - флотационный процесс обогащения руд. Для этой цели руду измельчают так, что кусочки ценной породы теряют связь с ненужной примесью. Затем полученный порошок взбалтывают в воде, в которую добавляют маслообразные вещества. Масло обволакивает (смачивает) ценную породу, но не пристает к примесям (не смачивает их). В полученную взвесь вдувают воздух. Пузырьки воздуха прилипают к несмачивающимся водой (вследствие покрытия масляной пленкой) кусочкам ценной породы. Это происходит потому, что тонкий слой воды между пузырьками воздуха и масляной пленкой, обволакивающей ценную породу, стремясь уменьшить свою поверхность, обнажает поверхность масляной пленки (подобно тому как вода на жирной поверхности собирается в капли, обнажая эту поверхность). Крупицы ценной породы вместе с прилипшими к ним пузырьками воздуха под действием архимедовой силы поднимаются вверх, в то время как ненужные примеси оседают на дно (рис. 7.20).

Рис. 7.20

Вода смачивает поверхности одних твердых тел (прилипает к ним) и не смачивает поверхности других. Эти свойства воды определяют множество полезных и просто любопытных явлений.

Смачиваемость твердого тела жидкостью - это способность жидкости растекаться по поверхности твердого тела под влиянием поверхностно-молекулярных сил.

Контур капли на поверхности твердого тела, по которому происходит соприкосновение трех фаз - твердой, жидкой и газообразной, называется периметром смачивания. Поверхности по-ровых каналов пористых сред характеризуются значительной неоднородностью по смачиваемости. В этой связи о смачиваемости породы в целом различными жидкостями можно говорить лишь как об осредненном показателе, характеризующем лишь соотношение и геометрию участков с различной степенью смачиваемости.

Осредненную избирательную смачиваемость горной породы пластовыми жидкостями можно оценить по скорости впитывания воды в нефтенасыщенный керн. В этом случае измеряется лишь относительная смачиваемость породы (относительно смачивае-

мости другого образца породы, свойства поверхности которого считаются известными). Это связано с зависимостью скорости впитывания воды в пористую среду не только от величины углов смачивания, но и от многочисленных свойств породы, учет влияния которых затруднен.

Мерой смачивания твердого тела жидкостью служит краевой угол смачивания в, образованный поверхностью твердого тела и касательной к поверхности капли в точке ее соприкосновения с телом (рис. 7).

Рис. 7. Различные случаи смачивания твердого тела жидкостью: жидкость смачивает твердое тело (а); промежуточное состояние (б); жидкость не смачивает твердое тело (в); 1 - жидкость; 2 - воздух; 3 - твердое тело

Если краевой угол в < 90°, то жидкость смачивает твердую поверхность; если угол #>90°, то жидкость не смачивает твердую поверхность; если угол 0 = 90°, то жидкость находится в промежуточном состоянии.

Смачиваемая водой поверхность твердого тела, для которой в < 90°, называется гидрофильной. Не смачиваемая водой поверхность твердого тела, для которой в > 90°, называется гидрофобной. Смачивание происходит в результате проявления молекулярных сил, действующих на разделе трех фаз: твердой - 3, газообразной - 2, жидкой - 1. По способности жидкости смачивать породу судят о величине поверхностного натяжения в системе порода-жидкость-газ или порода-жидкость-жидкость.

При равновесии сил, приложенных к единице длины периметра смачивания, будем иметь

где Gj_ 2 , Gj_ 3 и G 2 _ 3 - поверхностные натяжения на границе фаз 1-2, 1-3, 2-3.

Горные породы, способные вмещать нефть, газ, воду и отдавать их при разработке, называются коллекторами. Большинство пород-коллекторов имеет осадочное происхождение. Нефть и газ содержатся в терригенных коллекторах, таких как пески, песчаники, алевролиты, и в карбонатных коллекторах - известняки, доломиты, мел.

Породы-коллектора должны обладать емкостью (рис. 8), т.е. системой пор (пустот), трещин и каверн.

Рис. 8. Поровое пространство в горной породе: 1 - минеральные зерна; 2 - поровое пространство породы, заполненное жидкостью или газом

Но не все породы, обладающие емкостью, являются проницаемыми для нефти и газа, т.е. коллекторами. Поэтому важно знать не только пористость коллекторов, но и проницаемость. Проницаемость горных пород зависит от поперечных (к направлению движения углеводородов) размеров пустот в породе.

Принято подразделять коллекторы на три типа: гранулярные, или поровые (только обломочные горные породы), трещинные (любые горные породы) и каверновые (только карбонатные породы).

Емкость перового коллектора называется пористостью. Для характеристики пористости применяется коэффициент пористости, который показывает, какую часть от всего объема горной породы составляют поры. По размерам поры делятся на сверхкапиллярные (более 508 мкм), капиллярные (508-0,2 мкм) и субкапиллярные (менее 0,2 мкм).

Нефть, газ и вода в сверхкапиллярных порах свободно перемещаются под действием гравитационных сил. В капиллярных порах движение нефти, газа и воды затруднено вследствие проявления сил молекулярного сцепления. В субкапиллярных порах движение нефти, газа и воды не происходит. В пласте движение нефти, газа и воды происходит по сообщающимся каналам размером более 0,2 мкм. Пористость подразделяют на общую, открытую и эффективную.

Общая пористость - это объем всех пор в породе. Коэффициент общей пористости представляется отношением объема всех пор Vj к объему образца породы V 2:

которые сообщаются между собой. Открытая пористость характеризуется коэффициентом открытой пористости £ no как отношение суммарного объема открытых пор V 0 к объему образца породы V 2 ".

Существует также понятие эффективной пористости, которая определяется наличием пор в породе, из которых нефть и газ могут быть извлечены при разработке. Коэффициент эффективной пористости К П ^ равен отношению объема пор У эф, через ко-

торые возможно движение нефти, газа и воды при определенных температуре и давлении, к объему образца породы V 2:

коэффициент пористости горных пород составляет от 17-25% до 40%.

Важным показателем, характеризующим свойства горной породы пропускать нефть, газ и воду, является проницаемость. Единица проницаемости 1 мкм 2 . Это проницаемость породы, при фильтрации через образец которой площадью 1 м 2 , длиной 1 м и перепаде давления 0,1 МПа расход жидкости вязкостью 1 МПа-с составляет 1 м 3 /с. Проницаемость зависит от размера и конфигурации пор, плотности укладки, трещиноватости и взаимного расположения частиц породы. Проницаемость трещиноватых известняков колеблется от 0,005 до 0,02 мкм, а песчаников - от 0,05 до 3 мкм 2 .

Пористость и проницаемость нефтегазоносных пластов часто значительно изменяется в одном и том же пласте. Величина пористости и проницаемости в значительной степени влияет на конечное нефтеизвлечение. В процессе разработки нефтяных месторождений с целью увеличения пористости и проницаемости проводят различные геолого-технические мероприятия, такие как кислотные обработки, гидроразрыв пласта, щелевая разгрузка, обработка пласта оксидатом и т.д.

Определение пористости и проницаемости нефтесодержа-щих пород проводят по материалам геофизических исследований, образцам керна, отбираемого в процессе бурения, и по результатам испытания скважин на приток. По проницаемости и пористости, согласно А.А. Ханину (таблица 6), выделяются шесть классов коллекторов.

Удержание скоплений нефти и газа в горных породах невозможно, если они не будут перекрыты непроницаемыми породами, которые называют покрышками. В качестве покрышек могут быть глины, соли, гипсы и ангидриды.

Таблица 6

№ п/п Название породы по преобладанию гранулометрической фракции Пористость эффективная, % Проницаемость по газу, мкм 2 Оценка коллектора по проницаемости и емкости Класс колле ктора
Песчаник средне-зернистый 16,5 >1 очень высокая I
Алевролит мелкозернистый >1 очень высокая I
Песчаник средне-зернистый 15-16,5 >1 высокая II
Алевролит мелкозернистый 26,5-29 0,5-1 высокая II
Песчаник средне-зернистый 11-15 0,1-0,5 средняя Ш
Алевролит мелкозернистый 20,5-26,5 0,1-0,5 средняя III
Песчаник средне-зернистый 5,8-11 0,01-0,1 пониженная IV
Алевролит мелкозернистый 12-20,5 0,01-0,1 пониженная rv
Песчаник средне-зернистый 0,5-5,8 0,001-0,01 низкая V
Алевролит мелкозернистый 3,6-12 0,001-0,01 низкая V
Песчаник средне-зернистый 0,5 < 0,001 VI
Песчаник мелкозернистый < 0,001 Коллектор не имеет промышленного значения VI
Алевролит крупнозернистый 3,3 <0,001 Коллектор не имеет промышленного значения VI
Алевролит мелкозернистый 3,6 < 0,001 Коллектор не имеет промышленного значения VI

Покрышки различают по характеру распространения, толщине, однородности сложения, плотности, проницаемости, минеральному составу. Различают региональные, субрегиональные, зональные и локальные покрышки.

Таблица 7.

Классификация покрышек по Э.А. Бакирову

№ п/п Наименование покрышек Признак подразделения
По площади распространения
Региональные Распространены в пределах нефтегазоносной провинции или большей ее части
Субрегиональные Распространены в пределах нефтегазоносной области или большей ее части
Зональные Распространены в пределах зоны или района нефтегазонакопления
Локальные Распространены в пределах отдельных ме-стоскоплений
По состоянию с этажами нефтегазоносности
Межэтажные Перекрывают этаж нефтегазоносности в моноэтажных местоскоплениях или разделяют их в полиэтажных местоскоплениях
Внутриэтажные Разделяют продуктивные горизонты внутри этажа нефтегазоносности
По литологическому составу
Однородные (глинистые, карбонатные, галогенные) Состоят из пород одного литологического состава
Неоднородные: смешанные (песчано-глинистые; глинисто-карбонатные; терри-генно-галогенные и другие) Состоят из пород различного литологического состава, не имеющих четко выраженной слоистости
Расслоенные Состоят из чередования прослоев различных литологических разностей пород

Региональные покрышки имеют площадное распространение, характеризуются литологической выдержанностью и значи-

тельной толщиной. Они наблюдаются в пределах отдельных регионов (Волго-Уральская, Западно-Сибирская провинция и т.д.)

Зональные покрышки выдержаны в пределах отдельной зоны поднятий, по площади распространения они меньше региональных. Локальные покрышки встречаются в пределах место-скопления и обеспечивают сохранность отдельных залежей нефти и газа.

Большую роль в экранирующих свойствах покрышек играет степень их однородности. Наличие прослоев песчаников и алевролитов ухудшает свойство покрышек.

Чаще всего встречаются глинистые покрышки, обладающие хорошими экранирующими свойствами, а также каменная соль и т.д. Чем больше толщина покрышки, тем значительно выше ее изолирующие свойства.