Колебания. Гармонические колебания. Характеристика колебаний: амплитуда, период, частота.циклическая частота, фаза. Начальная фаза. Сдвиг фаз 4 что называется фазой гармонических колебаний

Но т.к. витки сдвинуты в пространстве, то наводимая в них ЭДС будет достигать амплитудных и нулевых значений не одновременно.

В начальный момент времени ЭДС витка будет:

В этих выражениях углы и называются фазными , или фазой . Углы и называются начальной фазой . Фазный угол определяет значение ЭДС в любой момент времени, а начальная фаза определяет значение ЭДС в начальный момент времени.

Разность начальных фаз двух синусоидальных величин одинаковой частоты и амплитуды называется углом сдвига фаз

Разделив угол сдвига фаз на угловую частоту, получим время, прошедшее с начала периода:

Графическое изображение синусоидальных величин

U = (U 2 a + (U L - U c) 2)

Таким образом, из-за наличия угла сдвига фаз напряжение U всегда меньше алгебраической суммы U a + U L + U C . Разность U L - U C = U p называется реактивной составляющей напряжения .

Рассмотрим, как изменяются ток и напряжение в последовательной цепи переменного тока.

Полное сопротивление и угол сдвига фаз. Если подставить в формулу (71) значения U a = IR; U L = lL и U C =I/(C), то будем иметь: U = ((IR) 2 + 2), откуда получаем формулу закона Ома для последовательной цепи переменного тока:

I = U / ((R 2 + 2)) = U / Z (72)

где Z = (R 2 + 2) = (R 2 + (X L - X c) 2)

Величину Z называют полным сопротивлением цепи , оно измеряется в омах. Разность L — l/(C) называют реактивным сопротивлением цепи и обозначают буквой X. Следовательно, полное сопротивление цепи

Z = (R 2 + X 2)

Соотношение между активным, реактивным и полным сопротивлениями цепи переменного тока можно также получить по теореме Пифагора из треугольника сопротивлений (рис. 193). Треугольник сопротивлений А’В’С’ можно получить из треугольника напряжений ABC (см. рис. 192,б), если разделить все его стороны на ток I.

Угол сдвига фаз определяется соотношением между отдельными сопротивлениями, включенными в данную цепь. Из треугольника А’В’С (см. рис. 193) имеем:

sin ? = X / Z; cos? = R / Z; tg? = X / R

Например, если активное сопротивление R значительно больше реактивного сопротивления X, угол сравнительно небольшой. Если в цепи имеется большое индуктивное или большое емкостное сопротивление, то угол сдвига фаз возрастает и приближается к 90°. При этом, если индуктивное сопротивление больше емкостного, напряжение и опережает ток i на угол; если же емкостное сопротивление больше индуктивного, то напряжение и отстает от тока i на угол.

Идеальная катушка индуктивности, реальная катушка и конденсатор в цепи переменного тока.

Реальная катушка в отличии от идеальной имеет не только индуктивность, но и активное сопротивление, поэтому при протекании переменного тока в ней сопровождается не только изменением энергии в магнитном поле, но и преобразованием электрической энергии в другой вид. В частности, в проводе катушки электрическая энергия преобразуется в тепло в соответствии с законом Ленца — Джоуля .

Ранее было выяснено, что в цепи переменного тока процесс преобразования электрической энергии в другой вид характеризуется активной мощностью цепи Р , а изменение энергии в магнитном поле — реактивной мощностью Q .

В реальной катушке имеют место оба процесса, т. е. ее активная и реактивная мощности отличны от нуля. Поэтому одна реальная катушка в схеме замещения должна быть представлена активным и реактивным элементами.

При изучении этого раздела следует иметь в виду, что колебания различной физической природы описываются с единых математических позиций. Здесь надо четко уяснить такие понятия, как гармоническое колебание, фаза, разность фаз, амплитуда, частота, период колебани.

Надо иметь в виду, что во всякой реальной колебательной системе есть сопротивления среды, т.е. колебания будут затухающими. Для характеристики затухания колебаний вводится коэффициент затухания и логарифмический декремент затухани.

Если колебания совершаются под действием внешней, периодически изменяющейся силы, то такие колебания называют вынужденными. Они будут незатухающими. Амплитуда вынужденных колебаний зависит от частоты вынуждающей силы. При приближении частоты вынужденных колебаний к частоте собственных колебаний амплитуда вынужденных колебаний резко возрастает. Это явление называется резонансом.

Переходя к изучению электромагнитных волн нужно четко представлять, что электромагнитная волна - это распространяющееся в пространстве электромагнитное поле. Простейшей системой, излучающей электромагнитные волны, является электрический диполь. Если диполь совершает гармонические колебания, то он излучает монохроматическую волну.

Таблица формул: колебания и волны

Физические законы, формулы, переменные

Формулы колебания и волны

Уравнение гармонических колебаний:

где х - смещение (отклонение) колеблющейся величины от положения равновесия;

А - амплитуда;

ω - круговая (циклическая) частота;

α - начальная фаза;

(ωt+α) - фаза.

Связь между периодом и круговой частотой:

Частота:

Связь круговой частоты с частотой:

Периоды собственных колебаний

1) пружинного маятника:

где k - жесткость пружины;

2) математического маятника:

где l - длина маятника,

g - ускорение свободного падения;

3) колебательного контура:

где L - индуктивность контура,

С - емкость конденсатора.

Частота собственных колебаний:

Сложение колебаний одинаковой частоты и направления:

1) амплитуда результирующего колебания

где А 1 и А 2 - амплитуды составляющих колебаний,

α 1 и α 2 - начальные фазы составляющих колебаний;

2) начальная фаза результирующего колебания

Уравнение затухающих колебаний:

е = 2,71... - основание натуральных логарифмов.

Амплитуда затухающих колебаний:

где А 0 - амплитуда в начальный момент времени;

β - коэффициент затухания;

Коэффициент затухания:

колеблющегося тела

где r - коэффициент сопротивления среды,

m - масса тела;

колебательного контура

где R - активное сопротивление,

L - индуктивность контура.

Частота затухающих колебаний ω:

Период затухающих колебаний Т:

Логарифмический декремент затухания:

Связь логарифмического декремента χ и коэффициента затухания β:

Определение

Начальная фаза колебаний - это параметр, который совместно с амплитудой колебаний определяет начальное состояние колебательной системы. Величину начальной фазы задают в начальных условиях, то есть при $t=0$ c.

Рассмотрим гармонические колебания некоторого параметра $\xi $. Гармонические колебания описываются уравнением:

\[\xi =A{\cos ({\omega }_0t+\varphi)\ }\ \left(1\right),\]

где $A={\xi }_{max}$ - амплитуда колебаний; ${\omega }_0$ - циклическая (круговая) частота колебаний. Параметр $\xi $ лежит в пределах $-A\le \xi \le $+A.

Определение фазы колебаний

Весь аргумент периодической функции (в данном случае косинуса:$\ ({\omega }_0t+\varphi)$), описывающей колебательный процесс, называют фазой колебаний. Величина фазы колебаний в начальный момент времени, то есть при $t=0$, ($\varphi $)- носит название начальной фазы. Устоявшегося обозначения фазы нет, у нас начальная фаза обозначена $\varphi $. Иногда, чтобы подчеркнуть, что начальная фаза относится к моменту времени $t=0$ к букве, обозначающей начальную фазу, добавляют индекс 0, пишут, например, ${\varphi }_0.$

Единицей измерения начальной фазы является единица измерения угла - радиан (рад) или градус.

Начальная фаза колебаний и способ возбуждения колебаний

Допустим, что при $t=0$ смещение системы от положения равновесия равно ${\xi }_0$, а начальная скорость ${\dot{\xi }}_0$. Тогда уравнение (1) принимает вид:

\[\xi \left(0\right)=A{\cos \varphi =\ }{\xi }_0\left(2\right);;\] \[\ \frac{d\xi }{dt}=-A{\omega }_0{\sin \varphi =\ }{\dot{\xi }}_0\to -A{\sin \varphi =\frac{{\dot{\xi }}_0}{{\omega }_0}\ }\ \left(3\right).\]

Возведем в квадрат оба уравнения (2) и сложим их:

\[{\xi }^2_0+{\left(\frac{{\dot{\xi }}_0}{{\omega }_0}\right)}^2=A^2\left(4\right).\]

Из выражения (4) имеем:

Разделим уравнение (3) на (2), получим:

Выражения (5) и (6) показывают, что начальная фаза и амплитуда зависят от начальных условий колебаний. Это значит, что амплитуда и начальная фаза зависят от способа возбуждения колебаний. Например, если груз пруженного маятника отклоняют от положения равновесия и на расстояние $x_0$ и отпускают без толчка, тогда уравнением движения маятника является уравнение:

с начальными условиями:

При таком возбуждении колебания пружинного маятника можно описывать выражением:

Сложение колебаний и начальная фаза

Тело, совершающее колебания, способно принимать участие в нескольких колебательных процессах одновременно. В таком случае возникает необходимость выяснить, каким будет результирующее колебание.

Допустим, что два колебания с равными частотами происходят по одной прямой. Уравнением результирующих колебаний будет выражение:

\[\xi ={\xi }_1+{\xi }_2=A{\cos \left({\omega }_0t+\varphi \right),\ }\]

тогда амплитуда суммарного колебания равна:

где $A_1$; $A_2$ - амплитуды складывающихся колебаний; ${\varphi }_2;;{\varphi }_1$ - начальные фазы суммирующихся колебаний. При этом начальную фазу полученного колебания ($\varphi $) вычисляют, применяя формулу:

Уравнение траектории точки, которая принимает участие в двух взаимно перпендикулярных колебаниях с амплитудами $A_1$и $A_2$ и начальными фазами ${\varphi }_2и{\varphi }_1$:

\[\frac{x^2}{A^2_1}+\frac{y^2}{A^2_2}-\frac{2xy}{A_1A_2}{\cos \left({\varphi }_2-{\varphi }_1\right)\ }={sin}^2\left({\varphi }_2-{\varphi }_1\right)\left(12\right).\]

В случае равенства начальных фаз составляющих колебаний уравнение траектории имеет вид:

что говорит о движении точки по прямой линии.

Если разность начальных фаз складываемых колебаний составляет $\Delta \varphi ={\varphi }_2-{\varphi }_1=\frac{\pi }{2},$ уравнением траектории становится формула:

\[\frac{x^2}{A^2_1}+\frac{y^2}{A^2_2}=1\left(14\right),\]

что означает, траектория движения эллипс.

Примеры задач с решением

Пример 1

Задание. Колебания пружинного осциллятора возбуждены толчком из положения равновесия, при этом грузу сообщают мгновенную скорость, равную $v_0$. Запишите начальные условия для такого колебания и функцию $x(t)$, описывающую данные колебания.

Решение. Сообщение грузу пружинного маятника мгновенной скорости равной $v_0$ означает, что при описании его колебаний с помощью уравнения:

начальными условиями будут:

Подставим в выражение (1.1) $t=0$, имеем:

Так как $A\ne 0$, то ${\cos \left(\varphi \right)\ }=0\to \varphi =\pm \frac{\pi }{2}.$

Возьмем первую производную $\frac{dx}{dt}$ подставим момент времени $t=0$:

\[\dot{x}\left(0\right)=-A{\omega }_{0\ }{\sin \left(\varphi \right)\ }=v_0\to A=\frac{v_0}{{\omega }_{0\ }}\ \left(1.4\right).\]

Из (1.4) следует, что начальная фаза получается $\varphi =-\frac{\pi }{2}.$ Подставим, полученную начальную фазу и амплитуду в уравнение (1.1):

Ответ. $x(t)=\frac{v_0}{{\omega }_{0\ }}{\sin (\ }{\omega }_0t)$

Пример 2

Задание. Два колебания одного направления складываются. Уравнения этих колебаний имеют вид: $x_1={\cos \pi (t+\frac{1}{6})\ };;\ x_2=2{\cos \pi (t+\frac{1}{2})\ }$. Какова начальная фаза полученного колебания?

Решение. Запишем уравнение гармонических колебаний по оси X:

Преобразуем заданные в условии задачи уравнения к этому же виду:

\;;\ x_2=2{\cos \left[\pi t+\frac{\pi }{2}\right](2.2).\ }\]

Сравнивая уравнения (2.2) с (2.1) получим, что начальные фазы колебаний равны:

\[{\varphi }_1=\frac{\pi }{6};;\ {\varphi }_2=\frac{\pi }{2}.\]

Изобразим на рис.1 векторную диаграмму колебаний.

$tg\ \varphi $ суммарных колебаний можно найти из рис.1:

\ \[\varphi =arctg\ \left(2,87\right)\approx 70,9{}^\circ \]

Ответ. $\varphi =70,9{}^\circ $

Волны имеют вид

Уравнения плоской монохроматической электромагнитной

Мгновенные значения в любой точке связаны соотношением

Колеблются в одинаковых фазах, а их

Плоскости, перпендикулярной вектору скорости распростра-

Магнитного полей взаимно перпендикулярны и лежат в

Электромагнитные волны являются поперечными,

Средах определяется формулой

Фазовая скорость электромагнитных волн в различных

Волну.

Пространстве процесс и представляет собой электромагнитную

Точке к другой. Этот периодический во времени и

Распространяющихся в окружающем пространстве от одной

Взаимных превращений электрического и магнитного полей,

Электромагнитное поле, то возникает последовательность

Возбуждать с помощью колеблющихся зарядов переменное

Уравнений Максвелла для электромагнитного поля. Если

Существование электромагнитных волн вытекает из

Электромагнитные волны

Щими, будет слабым. Таким образом, осуществляется, например,

Напряжение, создаваемое на конденсаторе другими составляю-

Превышающее значение данной составляющей, в то время как

Идальных напряжений, нужной составляющей. Настроив

Сложного напряжения, равного сумме нескольких синусо-

Явление резонанса используют для выделения из

Равна величине обратной добротности контура, т. е.

Относительная ширина резонансной кривой

Добротность контура определяет остроту резонансных

Активному сопротивлению контура.

Таким образом, добротность обратно пропорциональна

С рез U

Конденсаторе может превышать приложенное напряжение, т.е.

Резонансные свойства контура характеризует доброт-

Установившийся ток в цепи с конденсатором течь не может.

Iрез LC

Совпадает с собственной частотой контура

Следовательно, резонансная частота для силы тока

Рис. 1.22

R1 < R2 < R3

  . (1.96)

При ω →0, I = 0, так как при постоянном напряжении

ность Q, которая показывает, во сколько раз напряжение на

 (1.97)

При малых затуханиях ω рез ω0 и

Q  1 (1.98)

кривых. На рис. 1.23 изображена одна из резонансных кривых

для силы тока в контуре. Частоты ω1 и ω2 соответствуют току

max I I 2 .

 

контур (посредством изменения R и C ) на требуемую частоту

, можно получить на конденсаторе напряжение в Q раз



настройка радиоприёмника на нужную длину волны.

    1 0 2

m max I

Рис. 1.7

Рис.1.23

 , (1.100)

 - скорость электромагнитных волн в вакууме.

поскольку векторы E

и H

напряжённости электрического и

нения волны, образуя правовинтовую систему (рис.1.24). При

этом векторы E

и Н

0 0   E  Н. (1.101)

cos() m Е  Е t  kx  , (1.102)

cos() m H  H t  kx  , (1.103)

где ω- частота волны, k = ω/υ = 2π/λ – волновое число, α-

Рис.1.24

Электромагнитные волны переносят энергию. Объёмная

Колебательные процессы - важный элемент современной науки и техники, поэтому их изучению всегда уделялось внимание, как одной из “вечных” проблем. Задача любого знания - не простое любопытство, а использование его в повседневной жизни. А для этого существуют и ежедневно появляются новые технические системы и механизмы. Они находятся в движении, проявляют свою сущность, выполняя какую-нибудь работу, либо, будучи неподвижными, сохраняют потенциальную возможность при определенных условиях перейти в состояние движения. А что есть движение? Не углубляясь в дебри, примем простейшее толкование: изменение положения материального тела относительно любой системы координат, которую условно считают неподвижной.

Среди огромного количества возможных вариантов движения особый интерес представляет колебательное, которое отличается тем, что система повторяет изменение своих координат (или физических величин) через определенные промежутки времени - циклы. Такие колебания называются периодическими или циклическими. Среди них выделяют отдельным классом у которых характерные признаки (скорость, ускорение, положение в пространстве и т.д.) изменяются во времени по гармоническому закону, т.е. имеющему синусоидальный вид. Замечательным свойством гармонических колебаний является то, что их комбинация представляет любые другие варианты, в т.ч. и негармонические. Очень важным понятием в физике является “фаза колебаний”, которое означает фиксацию положения колеблющегося тела в некоторый момент времени. Измеряется фаза в угловых единицах - радианах, достаточно условно, просто как удобный прием для объяснения периодических процессов. Другими словами, фаза определяет значение текущего состояния колебательной системы. Иначе и быть не может - ведь фаза колебаний является аргументом функции, которая описывает эти колебания. Истинное значение фазы для характера может означать координаты, скорость и другие физические параметры, изменяющиеся по гармоническому закону, но общим для них является временная зависимость.

Продемонстрировать, колебаний, совсем не сложно - для этого понадобится простейшая механическая система - нить, длиной r, и подвешенная на ней “материальная точка” - грузик. Закрепим нить в центре прямоугольной системы координат и заставим наш “маятник” крутиться. Допустим, что он охотно это делает с угловой скоростью w. Тогда за время t угол поворота груза составит φ = wt. Дополнительно в этом выражении должна быть учтена начальная фаза колебаний в виде угла φ0 - положение системы перед началом движения. Итак, полный угол поворота, фаза, вычисляется из соотношения φ = wt+ φ0. Тогда выражение для гармонической функции, а это проекция координаты груза на ось Х, можно записать:

x = А * cos(wt + φ0), где А - амплитуда колебания, в нашем случае равная r - радиусу нити.

Аналогично такая же проекция на ось Y запишется следующим образом:

у = А * sin(wt + φ0).

Следует понимать, что фаза колебаний означает в данном случае не меру поворота “угол”, а угловую меру времени, которая выражает время в единицах угла. За это время груз совершает поворот на некоторый угол, который можно однозначно определить, исходя из того, что для циклического колебания w = 2 * π /Т, где Т - период колебания. Следовательно, если одному периоду соответствует поворот на 2π радиан, то часть периода, время, можно пропорционально выразить углом как долей от полного поворота 2π.

Колебания не существуют сами по себе - звуки, свет, вибрация всегда являются суперпозицией, наложением, большого количества колебаний от разных источников. Безусловно, на результат наложения двух и более колебаний оказывают влияние их параметры, в т.ч. и фаза колебаний. Формула суммарного колебания, как правило, негармонического, при этом может иметь очень сложный вид, но от этого становится только интереснее. Как сказано выше, любое негармоническое колебание можно представить в виде большого числа гармонических с разной амплитудой, частотой и фазой. В математике такая операция называется “разложение функции в ряд” и широко используется при проведении расчетов, например, прочности конструкций и сооружений. Основой таких расчетов являются исследования гармонических колебаний с учетом всех параметров, в том числе и фазы.