Линейная зависимость и линейная независимость векторов. Базис векторов. Аффинная система координат. Размерность и базис векторного пространства, разложение вектора по базису, примеры Как доказать что система векторов является базисом

Линейной комбинацией векторов называется вектор
, где λ 1 , ... , λ m – произвольные коэффициенты.

Система векторов
называется линейно зависимой, если существует ее линейная комбинация, равная, в которой есть хотя бы один ненулевой коэффициент.

Система векторов
называется линейно независимой, если в любой ее линейной комбинации, равной, все коэффициенты нулевые.

Базисом системы векторов
называется ее непустая линейно независимая подсистема, через которую можно выразить любой вектор системы.

П р и м е р 2. Найти базис системы векторов= (1, 2, 2, 4),= (2, 3, 5, 1),= (3, 4, 8, -2),= (2, 5, 0, 3) и выразить остальные векторы через базис.

Р е ш е н и е. Строим матрицу, в которой координаты данных векторов располагаем по столбцам. Приводим ее к ступенчатому виду.

~
~
~
.

Базис данной системы образуют векторы ,,, которым соответствуют ведущие элементы строк, выделенные кружками. Для выражения векторарешаем уравнениеx 1 +x 2 + x 4 =. Оно сводится к системе линейных уравнений, матрица которой получается из исходной перестановкой столбца, соответствующего, на место столбца свободных членов. Поэтому для решения системы используем полученную матрицу в ступенчатом виде, сделав в ней необходимые перестановки.

Последовательно находим:

x 1 + 4 = 3, x 1 = -1;

= -+2.

Замечание 1. Если требуется выразить через базис несколько векторов, то для каждого из них строится соответствующая система линейных уравнений. Эти системы будут отличаться только столбцами свободных членов. Поэтому для их решения можно составить одну матрицу, в которой будет несколько столбцов свободных членов. При этом каждая система решается независимо от остальных.

Замечание 2. Для выражения любого вектора достаточно использовать только базисные векторы системы, стоящие перед ним. При этом нет необходимости переформировывать матрицу, достаточно поставить вертикальную черту в нужном месте.

У п р а ж н е н и е 2. Найти базис системы векторов и выразить остальные векторы через базис:

а) = (1, 3, 2, 0),= (3, 4, 2, 1),= (1, -2, -2, 1),= (3, 5, 1, 2);

б) = (2, 1, 2, 3),= (1, 2, 2, 3),= (3, -1, 2, 2),= (4, -2, 2, 2);

в) = (1, 2, 3),= (2, 4, 3),= (3, 6, 6),= (4, -2, 1);= (2, -6, -2).

    1. 3. Фундаментальная система решений

Система линейных уравнений называется однородной, если все ее свободные члены равны нулю.

Фундаментальной системой решений однородной системы линейных уравнений называется базис множества ее решений.

Пусть дана неоднородная система линейных уравнений. Однородной системой, ассоциированной с данной, называется система, полученная из данной заменой всех свободных членов на нули.

Если неоднородная система совместна и неопределенна, то ее произвольное решение имеет вид f н +  1 f о1 + ... +  k f о k ,гдеf н – частное решение неоднородной системы иf о1 , ... , f о k – фундаментальная система решений ассоциированной однородной системы.

П р и м е р 3. Найти частное решение неоднородной системы из примера 1 и фундаментальную систему решений ассоциированной однородной системы.

Р е ш е н и е. Запишем решение, полученное в примере 1, в векторном виде и разложим получившийся вектор в сумму по свободным параметрам, имеющимся в нем, и фиксированным числовым значениям:

= (x 1 , x 2 , x 3 , x 4) = (–2a + 7b – 2, a, –2b + 1, b) = (–2a, a, 0, 0) + (7b, 0, –2b, b) + +(– 2, 0, 1, 0) = a(-2, 1, 0, 0) + b(7, 0, -2, 1) + (– 2, 0, 1, 0).

­­ Получаемf н =(– 2, 0, 1, 0), f о1 = (-2, 1, 0, 0), f о2 = (7, 0, -2, 1).

Замечание. Аналогично решается задача нахождения фундаментальной системы решений однородной системы.

У п р а ж н е н и е 3.1 Найти фундаментальную систему решений однородной системы:

а)

б)

в) 2x 1 – x 2 +3x 3 = 0.

У п р а ж н е н и е 3.2. Найти частное решение неоднородной системы и фундаментальную систему решений ассоциированной однородной системы:

а)

б)

В статье о n -мерных векторах мы пришли к понятию линейного пространства, порождаемого множеством n -мерных векторов. Теперь нам предстоит рассмотреть не менее важные понятия, такие как размерность и базис векторного пространства. Они напрямую связаны с понятием линейно независимой системы векторов, так что дополнительно рекомендуется напомнить себе основы и этой темы.

Введем некоторые определения.

Определение 1

Размерность векторного пространства – число, соответствующее максимальному количеству линейно независимых векторов в этом пространстве.

Определение 2

Базис векторного пространства – совокупность линейно независимых векторов, упорядоченная и в своей численности равная размерности пространства.

Рассмотрим некое пространство n -векторов. Размерность его соответственно равна n . Возьмем систему из n -единичных векторов:

e (1) = (1 , 0 , . . . , 0) e (2) = (0 , 1 , . . . , 0) e (n) = (0 , 0 , . . . , 1)

Используем эти векторы в качестве составляющих матрицы A: она будет являться единичной с размерностью n на n . Ранг этой матрицы равен n . Следовательно, векторная система e (1) , e (2) , . . . , e (n) является линейно независимой. При этом к системе невозможно добавить ни одного вектора, не нарушив ее линейной независимости.

Так как число векторов в системе равно n , то размерность пространства n -мерных векторов равна n , а единичные векторы e (1) , e (2) , . . . , e (n) являются базисом указанного пространства.

Из полученного определения сделаем вывод: любая система n -мерных векторов, в которой число векторов меньше n , не является базисом пространства.

Если мы поменяем местами первый и второй вектор, получим систему векторов e (2) , e (1) , . . . , e (n) . Она также будет являться базисом n -мерного векторного пространства. Составим матрицу, взяв за ее строки векторы полученной системы. Матрица может быть получена из единичной матрицы перестановкой местами первых двух строк, ранг ее будет равен n . Система e (2) , e (1) , . . . , e (n) линейно независима и является базисом n -мерного векторного пространства.

Переставив местами в исходной системе другие векторы, получим еще один базис.

Мы можем взять линейно независимую систему неединичных векторов, и она также будет представлять собой базис n -мерного векторного пространства.

Определение 3

Векторное пространство с размерностью n имеет столько базисов, сколько существует линейно независимых систем из n -мерных векторов числом n.

Плоскость является двумерным пространством – ее базисом будут два любых неколлинеарных вектора. Базисом трехмерного пространства послужат три любых некомпланарных вектора.

Рассмотрим применение данной теории на конкретных примерах.

Пример 1

Исходные данные: векторы

a = (3 , - 2 , 1) b = (2 , 1 , 2) c = (3 , - 1 , - 2)

Необходимо определить, являются ли указанные векторы базисом трехмерного векторного пространства.

Решение

Для решения поставленной задачи исследуем заданную систему векторов на линейную зависимость. Составим матрицу, где строки – координаты векторов. Определим ранг матрицы.

A = 3 2 3 - 2 1 - 1 1 2 - 2 A = 3 - 2 1 2 1 2 3 - 1 - 2 = 3 · 1 · (- 2) + (- 2) · 2 · 3 + 1 · 2 · (- 1) - 1 · 1 · 3 - (- 2) · 2 · (- 2) - 3 · 2 · (- 1) = = - 25 ≠ 0 ⇒ R a n k (A) = 3

Следовательно, заданные условием задачи векторы линейно независимы, и их численность равна размерности векторного пространства – они являются базисом векторного пространства.

Ответ: указанные векторы являются базисом векторного пространства.

Пример 2

Исходные данные: векторы

a = (3 , - 2 , 1) b = (2 , 1 , 2) c = (3 , - 1 , - 2) d = (0 , 1 , 2)

Необходимо определить, может ли указанная система векторов являться базисом трехмерного пространства.

Решение

Указанная в условии задачи система векторов является линейно зависимой, т.к. максимальное число линейно независимых векторов равно 3. Таким образом, указанная система векторов не может служить базисом трехмерного векторного пространства. Но стоит отметить, что подсистема исходной системы a = (3 , - 2 , 1) , b = (2 , 1 , 2) , c = (3 , - 1 , - 2) является базисом.

Ответ: указанная система векторов не является базисом.

Пример 3

Исходные данные: векторы

a = (1 , 2 , 3 , 3) b = (2 , 5 , 6 , 8) c = (1 , 3 , 2 , 4) d = (2 , 5 , 4 , 7)

Могут ли они являться базисом четырехмерного пространства?

Решение

Cоставим матрицу, используя в качестве строк координаты заданных векторов

A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7

По методу Гаусса определим ранг матрицы:

A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7 ~ 1 2 3 3 0 1 0 2 0 1 - 1 1 0 1 - 2 1 ~ ~ 1 2 3 3 0 1 0 2 0 0 - 1 - 1 0 0 - 2 - 1 ~ 1 2 3 3 0 1 0 2 0 0 - 1 - 1 0 0 0 1 ⇒ ⇒ R a n k (A) = 4

Следовательно, система заданных векторов линейно независима и их численность равна размерности векторного пространства – они являются базисом четырехмерного векторного пространства.

Ответ: заданные векторы являются базисом четырехмерного пространства.

Пример 4

Исходные данные: векторы

a (1) = (1 , 2 , - 1 , - 2) a (2) = (0 , 2 , 1 , - 3) a (3) = (1 , 0 , 0 , 5)

Составляют ли они базис пространства размерностью 4?

Решение

Исходная система векторов линейно независима, но численность векторов в ней недостаточна, чтобы стать базисом четырехмерного пространства.

Ответ: нет, не составляют.

Разложение вектора по базису

Примем, что произвольные векторы e (1) , e (2) , . . . , e (n) являются базисом векторного n-мерного пространства. Добавим к ним некий n -мерный вектор x → : полученная система векторов станет линейно зависимой. Свойства линейной зависимости гласят, что хотя бы один из векторов такой системы может линейно выражаться через остальные. Переформулируя это утверждение, можно говорить о том, что хотя бы один из векторов линейно зависимой системы может раскладываться по остальным векторам.

Таким образом, мы пришли к формулировке важнейшей теоремы:

Определение 4

Любой вектор n -мерного векторного пространства единственным образом раскладывается по базису.

Доказательство 1

Докажем эту теорему:

зададим базис n -мерного векторного пространства - e (1) , e (2) , . . . , e (n) . Сделаем систему линейно зависимой, добавив к ней n -мерный вектор x → . Этот вектор может быть линейно выражен через исходные векторы e:

x = x 1 · e (1) + x 2 · e (2) + . . . + x n · e (n) , где x 1 , x 2 , . . . , x n - некоторые числа.

Теперь докажем, что такое разложение является единственным. Предположим, что это не так и существует еще одно подобное разложение:

x = x ~ 1 e (1) + x 2 ~ e (2) + . . . + x ~ n e (n) , где x ~ 1 , x ~ 2 , . . . , x ~ n - некие числа.

Отнимем от левой и правой частей этого равенства соответственно левую и правую части равенства x = x 1 · e (1) + x 2 · e (2) + . . . + x n · e (n) . Получим:

0 = (x ~ 1 - x 1) · e (1) + (x ~ 2 - x 2) · e (2) + . . . (x ~ n - x n) · e (2)

Система базисных векторов e (1) , e (2) , . . . , e (n) линейно независима; по определению линейной независимости системы векторов равенство выше возможно только тогда, когда все коэффициенты (x ~ 1 - x 1) , (x ~ 2 - x 2) , . . . , (x ~ n - x n) будут равны нулю. Из чего справедливым будет: x 1 = x ~ 1 , x 2 = x ~ 2 , . . . , x n = x ~ n . И это доказывает единственный вариант разложения вектора по базису.

При этом коэффициенты x 1 , x 2 , . . . , x n называются координатами вектора x → в базисе e (1) , e (2) , . . . , e (n) .

Доказанная теория делает понятным выражение «задан n -мерный вектор x = (x 1 , x 2 , . . . , x n) »: рассматривается вектор x → n -мерного векторного пространства, и его координаты заданы в некотором базисе. При этом также понятно, что этот же вектор в другом базисе n -мерного пространства будет иметь другие координаты.

Рассмотрим следующий пример: допустим, что в некотором базисе n -мерного векторного пространства задана система из n линейно независимых векторов

а также задан вектор x = (x 1 , x 2 , . . . , x n) .

Векторы e 1 (1) , e 2 (2) , . . . , e n (n) в этом случае также являются базисом этого векторного пространства.

Предположим, что необходимо определить координаты вектора x → в базисе e 1 (1) , e 2 (2) , . . . , e n (n) , обозначаемые как x ~ 1 , x ~ 2 , . . . , x ~ n .

Вектор x → будет представлен следующим образом:

x = x ~ 1 · e (1) + x ~ 2 · e (2) + . . . + x ~ n · e (n)

Запишем это выражение в координатной форме:

(x 1 , x 2 , . . . , x n) = x ~ 1 · (e (1) 1 , e (1) 2 , . . . , e (1) n) + x ~ 2 · (e (2) 1 , e (2) 2 , . . . , e (2) n) + . . . + + x ~ n · (e (n) 1 , e (n) 2 , . . . , e (n) n) = = (x ~ 1 e 1 (1) + x ~ 2 e 1 (2) + . . . + x ~ n e 1 (n) , x ~ 1 e 2 (1) + x ~ 2 e 2 (2) + + . . . + x ~ n e 2 (n) , . . . , x ~ 1 e n (1) + x ~ 2 e n (2) + . . . + x ~ n e n (n))

Полученное равенство равносильно системе из n линейных алгебраических выражений с n неизвестными линейными переменными x ~ 1 , x ~ 2 , . . . , x ~ n:

x 1 = x ~ 1 e 1 1 + x ~ 2 e 1 2 + . . . + x ~ n e 1 n x 2 = x ~ 1 e 2 1 + x ~ 2 e 2 2 + . . . + x ~ n e 2 n ⋮ x n = x ~ 1 e n 1 + x ~ 2 e n 2 + . . . + x ~ n e n n

Матрица этой системы будет иметь следующий вид:

e 1 (1) e 1 (2) ⋯ e 1 (n) e 2 (1) e 2 (2) ⋯ e 2 (n) ⋮ ⋮ ⋮ ⋮ e n (1) e n (2) ⋯ e n (n)

Пусть это будет матрица A , и ее столбцы – векторы линейно независимой системы векторов e 1 (1) , e 2 (2) , . . . , e n (n) . Ранг матрицы – n , и ее определитель отличен от нуля. Это свидетельствует о том, что система уравнений имеет единственное решение, определяемое любым удобным способом: к примеру, методом Крамера или матричным методом. Таким образом мы сможем определить координаты x ~ 1 , x ~ 2 , . . . , x ~ n вектора x → в базисе e 1 (1) , e 2 (2) , . . . , e n (n) .

Применим рассмотренную теорию на конкретном примере.

Пример 6

Исходные данные: в базисе трехмерного пространства заданы векторы

e (1) = (1 , - 1 , 1) e (2) = (3 , 2 , - 5) e (3) = (2 , 1 , - 3) x = (6 , 2 , - 7)

Необходимо подтвердить факт, что система векторов e (1) , e (2) , e (3) также служит базисом заданного пространства, а также определить координаты вектора х в заданном базисе.

Решение

Система векторов e (1) , e (2) , e (3) будет являться базисом трехмерного пространства, если она линейно независима. Выясним эту возможность, определив ранг матрицы A , строки которой – заданные векторы e (1) , e (2) , e (3) .

Используем метод Гаусса:

A = 1 - 1 1 3 2 - 5 2 1 - 3 ~ 1 - 1 1 0 5 - 8 0 3 - 5 ~ 1 - 1 1 0 5 - 8 0 0 - 1 5

R a n k (A) = 3 . Таким образом, система векторов e (1) , e (2) , e (3) линейно независима и является базисом.

Пусть в базисе вектор x → имеет координаты x ~ 1 , x ~ 2 , x ~ 3 . Связь этих координат определяется уравнением:

x 1 = x ~ 1 e 1 (1) + x ~ 2 e 1 (2) + x ~ 3 e 1 (3) x 2 = x ~ 1 e 2 (1) + x ~ 2 e 2 (2) + x ~ 3 e 2 (3) x 3 = x ~ 1 e 3 (1) + x ~ 2 e 3 (2) + x ~ 3 e 3 (3)

Применим значения согласно условиям задачи:

x ~ 1 + 3 x ~ 2 + 2 x ~ 3 = 6 - x ~ 1 + 2 x ~ 2 + x ~ 3 = 2 x ~ 1 - 5 x ~ 2 - 3 x 3 = - 7

Решим систему уравнений методом Крамера:

∆ = 1 3 2 - 1 2 1 1 - 5 - 3 = - 1 ∆ x ~ 1 = 6 3 2 2 2 1 - 7 - 5 - 3 = - 1 , x ~ 1 = ∆ x ~ 1 ∆ = - 1 - 1 = 1 ∆ x ~ 2 = 1 6 2 - 1 2 1 1 - 7 - 3 = - 1 , x ~ 2 = ∆ x ~ 2 ∆ = - 1 - 1 = 1 ∆ x ~ 3 = 1 3 6 - 1 2 2 1 - 5 - 7 = - 1 , x ~ 3 = ∆ x ~ 3 ∆ = - 1 - 1 = 1

Так, вектор x → в базисе e (1) , e (2) , e (3) имеет координаты x ~ 1 = 1 , x ~ 2 = 1 , x ~ 3 = 1 .

Ответ: x = (1 , 1 , 1)

Связь между базисами

Предположим, что в некотором базисе n-мерного векторного пространства даны две линейно независимые системы векторов:

c (1) = (c 1 (1) , c 2 (1) , . . . , c n (1)) c (2) = (c 1 (2) , c 2 (2) , . . . , c n (2)) ⋮ c (n) = (c 1 (n) , e 2 (n) , . . . , c n (n))

e (1) = (e 1 (1) , e 2 (1) , . . . , e n (1)) e (2) = (e 1 (2) , e 2 (2) , . . . , e n (2)) ⋮ e (n) = (e 1 (n) , e 2 (n) , . . . , e n (n))

Указанные системы являются также базисами заданного пространства.

Пусть c ~ 1 (1) , c ~ 2 (1) , . . . , c ~ n (1) - координаты вектора c (1) в базисе e (1) , e (2) , . . . , e (3) , тогда связь координат будет задаваться системой линейных уравнений:

с 1 (1) = c ~ 1 (1) e 1 (1) + c ~ 2 (1) e 1 (2) + . . . + c ~ n (1) e 1 (n) с 2 (1) = c ~ 1 (1) e 2 (1) + c ~ 2 (1) e 2 (2) + . . . + c ~ n (1) e 2 (n) ⋮ с n (1) = c ~ 1 (1) e n (1) + c ~ 2 (1) e n (2) + . . . + c ~ n (1) e n (n)

В виде матрицы систему можно отобразить так:

(c 1 (1) , c 2 (1) , . . . , c n (1)) = (c ~ 1 (1) , c ~ 2 (1) , . . . , c ~ n (1)) · e 1 (1) e 2 (1) … e n (1) e 1 (2) e 2 (2) … e n (2) ⋮ ⋮ ⋮ ⋮ e 1 (n) e 2 (n) … e n (n)

Сделаем по аналогии такую же запись для вектора c (2) :

(c 1 (2) , c 2 (2) , . . . , c n (2)) = (c ~ 1 (2) , c ~ 2 (2) , . . . , c ~ n (2)) · e 1 (1) e 2 (1) … e n (1) e 1 (2) e 2 (2) … e n (2) ⋮ ⋮ ⋮ ⋮ e 1 (n) e 2 (n) … e n (n)

(c 1 (n) , c 2 (n) , . . . , c n (n)) = (c ~ 1 (n) , c ~ 2 (n) , . . . , c ~ n (n)) · e 1 (1) e 2 (1) … e n (1) e 1 (2) e 2 (2) … e n (2) ⋮ ⋮ ⋮ ⋮ e 1 (n) e 2 (n) … e n (n)

Матричные равенства объединим в одно выражение:

c 1 (1) c 2 (1) ⋯ c n (1) c 1 (2) c 2 (2) ⋯ c n (2) ⋮ ⋮ ⋮ ⋮ c 1 (n) c 2 (n) ⋯ c n (n) = c ~ 1 (1) c ~ 2 (1) ⋯ c ~ n (1) c ~ 1 (2) c ~ 2 (2) ⋯ c ~ n (2) ⋮ ⋮ ⋮ ⋮ c ~ 1 (n) c ~ 2 (n) ⋯ c ~ n (n) · e 1 (1) e 2 (1) ⋯ e n (1) e 1 (2) e 2 (2) ⋯ e n (2) ⋮ ⋮ ⋮ ⋮ e 1 (n) e 2 (n) ⋯ e n (n)

Оно и будет определять связь векторов двух различных базисов.

Используя тот же принцип, возможно выразить все векторы базиса e (1) , e (2) , . . . , e (3) через базис c (1) , c (2) , . . . , c (n) :

e 1 (1) e 2 (1) ⋯ e n (1) e 1 (2) e 2 (2) ⋯ e n (2) ⋮ ⋮ ⋮ ⋮ e 1 (n) e 2 (n) ⋯ e n (n) = e ~ 1 (1) e ~ 2 (1) ⋯ e ~ n (1) e ~ 1 (2) e ~ 2 (2) ⋯ e ~ n (2) ⋮ ⋮ ⋮ ⋮ e ~ 1 (n) e ~ 2 (n) ⋯ e ~ n (n) · c 1 (1) c 2 (1) ⋯ c n (1) c 1 (2) c 2 (2) ⋯ c n (2) ⋮ ⋮ ⋮ ⋮ c 1 (n) c 2 (n) ⋯ c n (n)

Дадим следующие определения:

Определение 5

Матрица c ~ 1 (1) c ~ 2 (1) ⋯ c ~ n (1) c ~ 1 (2) c ~ 2 (2) ⋯ c ~ n (2) ⋮ ⋮ ⋮ ⋮ c ~ 1 (n) c ~ 2 (n) ⋯ c ~ n (n) является матрицей перехода от базиса e (1) , e (2) , . . . , e (3)

к базису c (1) , c (2) , . . . , c (n) .

Определение 6

Матрица e ~ 1 (1) e ~ 2 (1) ⋯ e ~ n (1) e ~ 1 (2) e ~ 2 (2) ⋯ e ~ n (2) ⋮ ⋮ ⋮ ⋮ e ~ 1 (n) e ~ 2 (n) ⋯ e ~ n (n) является матрицей перехода от базиса c (1) , c (2) , . . . , c (n)

к базису e (1) , e (2) , . . . , e (3) .

Из этих равенств очевидно, что

c ~ 1 (1) c ~ 2 (1) ⋯ c ~ n (1) c ~ 1 (2) c ~ 2 (2) ⋯ c ~ n (2) ⋮ ⋮ ⋮ ⋮ c ~ 1 (n) c ~ 2 (n) ⋯ c ~ n (n) · e ~ 1 (1) e ~ 2 (1) ⋯ e ~ n (1) e ~ 1 (2) e ~ 2 (2) ⋯ e ~ n (2) ⋮ ⋮ ⋮ ⋮ e ~ 1 (n) e ~ 2 (n) ⋯ e ~ n (n) = 1 0 ⋯ 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 1 e ~ 1 (1) e ~ 2 (1) ⋯ e ~ n (1) e ~ 1 (2) e ~ 2 (2) ⋯ e ~ n (2) ⋮ ⋮ ⋮ ⋮ e ~ 1 (n) e ~ 2 (n) ⋯ e ~ n (n) · c ~ 1 (1) c ~ 2 (1) ⋯ c ~ n (1) c ~ 1 (2) c ~ 2 (2) ⋯ c ~ n (2) ⋮ ⋮ ⋮ ⋮ c ~ 1 (n) c ~ 2 (n) ⋯ c ~ n (n) = 1 0 ⋯ 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 1

т.е. матрицы перехода взаимообратны.

Рассмотрим теорию на конкретном примере.

Пример 7

Исходные данные: необходимо найти матрицу перехода от базиса

c (1) = (1 , 2 , 1) c (2) = (2 , 3 , 3) c (3) = (3 , 7 , 1)

e (1) = (3 , 1 , 4) e (2) = (5 , 2 , 1) e (3) = (1 , 1 , - 6)

Также нужно указать связь координат произвольного вектора x → в заданных базисах.

Решение

1. Пусть T – матрица перехода, тогда верным будет равенство:

3 1 4 5 2 1 1 1 1 = T · 1 2 1 2 3 3 3 7 1

Умножим обе части равенства на

1 2 1 2 3 3 3 7 1 - 1

и получим:

T = 3 1 4 5 2 1 1 1 - 6 · 1 2 1 2 3 3 3 7 1 - 1

2. Определим матрицу перехода:

T = 3 1 4 5 2 1 1 1 - 6 · 1 2 1 2 3 3 3 7 1 - 1 = = 3 1 4 5 2 1 1 1 - 6 · - 18 5 3 7 - 2 - 1 5 - 1 - 1 = - 27 9 4 - 71 20 12 - 41 9 8

3. Определим связь координат вектора x → :

допустим, что в базисе c (1) , c (2) , . . . , c (n) вектор x → имеет координаты x 1 , x 2 , x 3 , тогда:

x = (x 1 , x 2 , x 3) · 1 2 1 2 3 3 3 7 1 ,

а в базисе e (1) , e (2) , . . . , e (3) имеет координаты x ~ 1 , x ~ 2 , x ~ 3 , тогда:

x = (x ~ 1 , x ~ 2 , x ~ 3) · 3 1 4 5 2 1 1 1 - 6

Т.к. равны левые части этих равенств, мы можем приравнять и правые:

(x 1 , x 2 , x 3) · 1 2 1 2 3 3 3 7 1 = (x ~ 1 , x ~ 2 , x ~ 3) · 3 1 4 5 2 1 1 1 - 6

Умножим обе части справа на

1 2 1 2 3 3 3 7 1 - 1

и получим:

(x 1 , x 2 , x 3) = (x ~ 1 , x ~ 2 , x ~ 3) · 3 1 4 5 2 1 1 1 - 6 · 1 2 1 2 3 3 3 7 1 - 1 ⇔ ⇔ (x 1 , x 2 , x 3) = (x ~ 1 , x ~ 2 , x ~ 3) · T ⇔ ⇔ (x 1 , x 2 , x 3) = (x ~ 1 , x ~ 2 , x ~ 3) · - 27 9 4 - 71 20 12 - 41 9 8

С другой стороны

(x ~ 1 , x ~ 2 , x ~ 3) = (x 1 , x 2 , x 3) · - 27 9 4 - 71 20 12 - 41 9 8

Последние равенства показывают связь координат вектора x → в обоих базисах.

Ответ: матрица перехода

27 9 4 - 71 20 12 - 41 9 8

Координаты вектора x → в заданных базисах связаны соотношением:

(x 1 , x 2 , x 3) = (x ~ 1 , x ~ 2 , x ~ 3) · - 27 9 4 - 71 20 12 - 41 9 8

(x ~ 1 , x ~ 2 , x ~ 3) = (x 1 , x 2 , x 3) · - 27 9 4 - 71 20 12 - 41 9 8 - 1

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter


Когда мы разбирали понятия n -мерного вектора и вводили операции над векторами, то выяснили, что множество всех n -мерных векторов порождает линейное пространство. В этой статье мы поговорим о важнейших связанных понятиях – о размерности и базисе векторного пространства. Также рассмотрим теорему о разложении произвольного вектора по базису и связь между различными базисами n -мерного пространства. Подробно разберем решения характерных примеров.

Навигация по странице.

Понятие размерности векторного пространства и базиса.

Понятия размерности и базиса векторного пространства напрямую связаны с понятием линейно независимой системы векторов, так что рекомендуем при необходимости обращаться к статье линейная зависимость системы векторов, свойства линейной зависимости и независимости.

Определение.

Размерностью векторного пространства называется число, равное максимальному количеству линейно независимых векторов в этом пространстве.

Определение.

Базис векторного пространства – это упорядоченная совокупность линейно независимых векторов этого пространства, число которых равно размерности пространства.

Приведем некоторые рассуждения, основываясь на этих определениях.

Рассмотрим пространство n -мерных векторов.

Покажем, что размерность этого пространства равна n .

Возьмем систему из n единичных векторов вида

Примем эти векторы в качестве строк матрицы А . В этом случае матрица А будет единичной матрицей размерности n на n . Ранг этой матрицы равен n (при необходимости смотрите статью ). Следовательно, система векторов линейно независима, причем к этой системе нельзя добавить ни одного вектора, не нарушив ее линейной независимости. Так как число векторов в системе равно n , то размерность пространства n -мерных векторов равна n , а единичные векторы являются базисом этого пространства .

Из последнего утверждения и определения базиса можно сделать вывод, что любая система n -мерных векторов, число векторов в которой меньше n , не является базисом .

Теперь переставим местами первый и второй вектор системы . Легко показать, что полученная система векторов также является базисом n -мерного векторного пространства. Составим матрицу, приняв ее строками векторы этой системы. Эта матрица может быть получена из единичной матрицы перестановкой местами первой и второй строк, следовательно, ее ранг будет равен n . Таким образом, система из n векторов линейно независима и является базисом n -мерного векторного пространства.

Если переставить местами другие векторы системы , то получим еще один базис.

Если взять линейно независимую систему не единичных векторов, то она также является базисом n -мерного векторного пространства.

Таким образом, векторное пространство размерности n имеет столько базисов, сколько существует линейно независимых систем из n n -мерных векторов.

Если говорить о двумерном векторном пространстве (то есть, о плоскости), то ее базисом являются два любых не коллинеарных вектора. Базисом трехмерного пространства являются три любых некомпланарных вектора.

Рассмотрим несколько примеров.

Пример.

Являются ли векторы базисом трехмерного векторного пространства?

Решение.

Исследуем эту систему векторов на линейную зависимость. Для этого составим матрицу, строками которой будут координаты векторов, и найдем ее ранг:


Таким образом, векторы a , b и c линейно независимы и их количество равно размерности векторного пространства, следовательно, они являются базисом этого пространства.

Ответ:

Да, являются.

Пример.

Может ли система векторов быть базисом векторного пространства?

Решение.

Эта система векторов линейно зависима, так как максимальное число линейно независимых трехмерных векторов равно трем. Следовательно, эта система векторов не может быть базисом трехмерного векторного пространства (хотя подсистема исходной системы векторов является базисом).

Ответ:

Нет, не может.

Пример.

Убедитесь, что векторы

могут быть базисом четырехмерного векторного пространства.

Решение.

Составим матрицу, приняв ее строками исходные векторы:

Найдем :

Таким образом, система векторов a, b, c, d линейно независима и их количество равно размерности векторного пространства, следовательно, a, b, c, d являются его базисом.

Ответ:

Исходные векторы действительно являются базисом четырехмерного пространства.

Пример.

Составляют ли векторы базис векторного пространства размерности 4 ?

Решение.

Даже если исходная система векторов линейно независима, количество векторов в ней недостаточно для того, чтобы быть базисом четырехмерного пространства (базис такого пространства состоит из 4 векторов).

Ответ:

Нет, не составляет.

Разложение вектора по базису векторного пространства.

Пусть произвольные векторы являются базисом n -мерного векторного пространства. Если к ним добавить некоторый n -мерный вектор x , то полученная система векторов будет линейно зависимой. Из свойств линейной зависимости мы знаем, что хотя бы один вектор линейно зависимой системы линейно выражается через остальные. Иными словами, хотя бы один из векторов линейно зависимой системы раскладывается по остальным векторам.

Так мы подошли к очень важной теореме.

Теорема.

Любой вектор n -мерного векторного пространства единственным образом раскладывается по базису.

Доказательство.

Пусть - базис n -мерного векторного пространства. Добавим к этим векторам n -мерный вектор x . Тогда полученная система векторов будет линейно зависимой и вектор x может быть линейно выражен через векторы : , где - некоторые числа. Так мы получили разложение вектора x по базису. Осталось доказать, что это разложение единственно.

Предположим, что существует еще одно разложение , где - некоторые числа. Отнимем от левой и правой частей последнего равенства соответственно левую и правую части равенства :

Так как система базисных векторов линейно независима, то по определению линейной независимости системы векторов полученное равенство возможно только тогда, когда все коэффициенты равны нулю. Поэтому, , что доказывает единственность разложения вектора по базису.

Определение.

Коэффициенты называются координатами вектора x в базисе .

После знакомства с теоремой о разложении вектора по базису, мы начинаем понимать суть выражения «нам задан n -мерный вектор ». Это выражение означает, что мы рассматриваем вектор x n -мерного векторного пространства, координаты которого заданы в некотором базисе. При этом мы понимаем, что этот же вектор x в другом базисе n-мерного векторного пространства будет иметь координаты, отличные от .

Рассмотрим следующую задачу.

Пусть в некотором базисе n -мерного векторного пространства нам задана система из n линейно независимых векторов

и вектор . Тогда векторы также являются базисом этого векторного пространства.

Пусть нам требуется найти координаты вектора x в базисе . Обозначим эти координаты как .

Вектор x в базисе имеет представление . Запишем это равенство в координатной форме:

Это равенство равносильно системе из n линейных алгебраических уравнений с n неизвестными переменными :

Основная матрица этой системы имеет вид

Обозначим ее буквой А . Столбцы матрицы А представляют собой векторы линейно независимой системы векторов , поэтому ранг этой матрицы равен n , следовательно, ее определитель отличен от нуля. Этот факт указывает на то, что система уравнений имеет единственное решение, которое может быть найдено любым методом, например, или .

Так будут найдены искомые координаты вектора x в базисе .

Разберем теорию на примерах.

Пример.

В некотором базисе трехмерного векторного пространства заданы векторы

Убедитесь, что система векторов также является базисом этого пространства и найдите координаты вектора x в этом базисе.

Решение.

Чтобы система векторов была базисом трехмерного векторного пространства нужно, чтобы она была линейно независима. Выясним это, определив ранг матрицы A , строками которой являются векторы . Ранг найдем методом Гаусса


следовательно, Rank(A) = 3 , что показывает линейную независимость системы векторов .

Итак, векторы являются базисом. Пусть в этом базисе вектор x имеет координаты . Тогда, как мы показали выше, связь координат этого вектора задается системой уравнений

Подставив в нее известные из условия значения, получим

Решим ее методом Крамера:

Таким образом, вектор x в базисе имеет координаты .

Ответ:

Пример.

В некотором базисе четырехмерного векторного пространства задана линейно независимая система векторов

Известно, что . Найдите координаты вектора x в базисе .

Решение.

Так как система векторов линейно независима по условию, то она является базисом четырехмерного пространства. Тогда равенство означает, что вектор x в базисе имеет координаты . Обозначим координаты вектора x в базисе как .

Система уравнений, задающая связь координат вектора x в базисах и имеет вид

Подставляем в нее известные значения и находим искомые координаты :

Ответ:

.

Связь между базисами.

Пусть в некотором базисе n -мерного векторного пространства заданы две линейно независимые системы векторов

и

то есть, они тоже являются базисами этого пространства.

Если - координаты вектора в базисе , то связь координат и задается системой линейных уравнений (об этом мы говорили в предыдущем пункте):

, которая в матричной форме может быть записана как

Аналогично для вектора мы можем записать

Предыдущие матричные равенства можно объединить в одно, которое по сути задает связь векторов двух различных базисов

Аналогично мы можем выразить все векторы базиса через базис :

Определение.

Матрицу называют матрицей перехода от базиса к базису , тогда справедливо равенство

Умножив обе части этого равенства справа на

получим

Найдем матрицу перехода, при этом не будем подробно останавливаться на нахождении обратной матрицы и умножении матриц (смотрите при необходимости статьи и ):

Осталось выяснить связь координат вектора x в заданных базисах.

Пусть в базисе вектор x имеет координаты , тогда

а в базисе вектор x имеет координаты , тогда

Так как левые части последних двух равенств одинаковы, то мы можем приравнять правые части:

Если умножить обе части справа на

то получим


С другой стороны

(найдите обратную матрицу самостоятельно).
Два последних равенства дают нам искомую связь координат вектора x в базисах и .

Ответ:

Матрица перехода от базиса к базису имеет вид
;
координаты вектора x в базисах и связаны соотношениями

или
.

Мы рассмотрели понятия размерности и базиса векторного пространства, научились раскладывать вектор по базису и обнаружили связь между разными базисами n-мерного пространства векторов через матрицу перехода.

Выражение вида называется линейной комбинацией векторов A 1 , A 2 ,...,A n с коэффициентами λ 1, λ 2 ,...,λ n .

Определение линейной зависимости системы векторов

Система векторов A 1 , A 2 ,...,A n называется линейно зависимой , если существует ненулевой набор чисел λ 1, λ 2 ,...,λ n , при котором линейная комбинация векторов λ 1 *A 1 +λ 2 *A 2 +...+λ n *A n равна нулевому вектору , то есть система уравнений: имеет ненулевое решение.
Набор чисел λ 1, λ 2 ,...,λ n является ненулевым, если хотя бы одно из чисел λ 1, λ 2 ,...,λ n отлично от нуля.

Определение линейной независимости системы векторов

Система векторов A 1 , A 2 ,...,A n называется линейно независимой , если линейная комбинация этих векторов λ 1 *A 1 +λ 2 *A 2 +...+λ n *A n равна нулевому вектору только при нулевом наборе чисел λ 1, λ 2 ,...,λ n , то есть система уравнений: A 1 x 1 +A 2 x 2 +...+A n x n =Θ имеет единственное нулевое решение.

Пример 29.1

Проверить, является ли линейно зависимой система векторов

Решение :

1. Составляем систему уравнений :

2. Решаем ее методом Гаусса . Преобразования Жордано системы приведены в таблице 29.1. При расчете правые части системы не записываются так как они равны нулю и при преобразованиях Жордана не изменяются.

3. Из последних трех строк таблицы записываем разрешенную систему, равносильную исходной системе:

4. Получаем общее решение системы :

5. Задав по своему усмотрению значение свободной переменной x 3 =1, получаем частное ненулевое решение X=(-3,2,1).

Ответ: Таким образом, при ненулевом наборе чисел (-3,2,1) линейная комбинация векторов равняется нулевому вектору -3A 1 +2A 2 +1A 3 =Θ. Следовательно, система векторов линейно зависимая .

Свойства систем векторов

Свойство (1)
Если система векторов линейно зависимая, то хотя бы один из векторов разлагается по остальным и, наоборот, если хотя бы один из векторов системы разлагается по остальным, то система векторов линейно зависимая.

Свойство (2)
Если какая-либо подсистема векторов линейно зависимая, то и вся система линейно зависимая.

Свойство (3)
Если система векторов линейно независимая, то любая ее подсистема линейно независимая.

Свойство (4)
Любая система векторов, содержащая нулевой вектор, линейно зависимая.

Свойство (5)
Система m-мерных векторов всегда является линейно зависимой, если число векторов n больше их размерности (n>m)

Базис системы векторов

Базисом системы векторов A 1 , A 2 ,..., A n называется такая подсистема B 1 , B 2 ,...,B r (каждый из векторов B 1 ,B 2 ,...,B r является одним из векторов A 1 , A 2 ,..., A n) , которая удовлетворяет следующим условиям:
1. B 1 ,B 2 ,...,B r линейно независимая система векторов;
2. любой вектор A j системы A 1 , A 2 ,..., A n линейно выражается через векторы B 1 ,B 2 ,...,B r

r — число векторов входящих в базис.

Теорема 29.1 О единичном базисе системы векторов.

Если система m-мерных векторов содержит m различных единичных векторов E 1 E 2 ,..., E m , то они образуют базис системы.

Алгоритм нахождения базиса системы векторов

Для того, чтобы найти базис системы векторов A 1 ,A 2 ,...,A n необходимо:

  • Составить соответствующую системе векторов однородную систему уравнений A 1 x 1 +A 2 x 2 +...+A n x n =Θ
  • Привести эту систему

Определение базиса. Система векторов образует базис, если:

1) она линейно-независима,

2) любой вектор пространства через нее линейно выражается.

Пример 1. Базис пространства : .

2. В системе векторов базисом являются векторы: , т.к. линейно выражается через векторы .

Замечание. Чтобы найти базис данной системы векторов необходимо:

1) записать координаты векторов в матрицу,

2) с помощью элементарных преобразований привести матрицу к треугольному виду,

3) ненулевые строки матрицы будут являться базисом системы,

4) количество векторов в базисе равно рангу матрицы.

Теорема Кронекера-Капелли

Теорема Кронеккера–Капелли дает исчерпывающий ответ на вопрос о совместности произвольной системы линейных уравнений с неизвестными

Теорема Кронеккера–Капелли . Система линейных алгебраических урав­нений совместна тогда и только тогда, когда ранг расширенной матрицы системы равен рангу основной матрицы, .

Алгоритм отыскания всех решений совместной системы линейных уравнений вытекает из теоремы Кронеккера–Капелли и следующих теорем.

Теорема. Если ранг совместной системы равен числу неизвестных, то система имеет единственное решение.

Теорема. Если ранг совместной системы меньше числа неизвестных, то система имеет бесчисленное множество решений.

Алгоритм решения произвольной системы линейных уравнений:

1. Найдем ранги основной и расширенной матриц системы. Если они не равны (), то система несовместна (не имеет решений). Если ранги равны ( , то система совместна.

2. Для совместной системы найдем какой-нибудь минор, порядок которого определяет ранг матрицы (такой минор называют базисным). Составим новую систему из уравнений, в которых коэффициенты при неизвестных, входят в базисный минор (эти неизвестные называют главными неизвестными), остальные уравнения отбросим. Главные неизвестные с коэффициентами оставим слева, а остальные неизвестных (их называют свободными неизвестными) перенесем в правую часть уравнений.

3. Найдем выражения главных неизвестных через свободные. Получаем общее решение системы.



4. Придавая свободным неизвестным произвольные значения, получим соответствующие значения главных неизвестных. Таким образомнаходим частные решения исходной системы уравнений.

Линейное программирование. Основные понятия

Линейное программирование – это направление математического программирования, изучающее методы решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейным критерием.

Необходимым условием постановки задачи линейного программирования являются ограничения на наличие ресурсов, величину спроса, производственную мощность предприятия и другие производственные факторы.

Сущность линейного программирования состоит в нахождении точек наибольшего или наименьшего значения некоторой функции при определенном наборе ограничений, налагаемых на аргументы и образующихсистему ограничений , которая имеет, как правило, бесконечное множество решений. Каждая совокупность значений переменных (аргументов функции F ), которые удовлетворяют системе ограничений, называетсядопустимым планом задачи линейного программирования. Функция F , максимум или минимум которой определяется, называется целевой функцией задачи. Допустимый план, на котором достигается максимум или минимум функции F , называется оптимальным планом задачи.

Система ограничений, определяющая множество планов, диктуется условиями производства. Задачей линейного программирования (ЗЛП ) является выбор из множества допустимых планов наиболее выгодного (оптимального).

В общей постановке задача линейного программирования выглядит следующим образом:

Имеются какие-то переменные х = (х 1 , х 2 , … х n) и функция этих переменных f(x) = f (х 1 , х 2 , … х n) , которая носит название целевой функции. Ставится задача: найти экстремум (максимум или минимум) целевой функции f(x) при условии, что переменные x принадлежат некоторой области G :

В зависимости от вида функции f(x) и области G и различают разделы математического программирования: квадратичное программирование, выпуклое программирование, целочисленное программирование и т.д. Линейное программирование характеризуется тем, что
а) функция f(x) является линейной функцией переменных х 1 , х 2 , … х n
б) область G определяется системой линейных равенств или неравенств.