Обзор факторов, влияющих на скорость химических реакций. Урок"Скорость химической реакции.Факторы, влияющие на скорость химической реакции" Факторы влияющие на скор хим реакции

Химические реакции протекают с различными скоростями: с малой скоростью - при образовании сталактитов и сталагмитов, со средней скоростью - при варке пищи, мгновенно - при взрыве. Очень быстро проходят реакции в водных растворах.

Определение скорости хи­мической реакции, а также выяснение ее зависимости от условий проведения про­цесса - задача химической кинетики - науки о законо­мерностях протекания хими­ческих реакций во времени.

Если химические реакции происходят в однородной сре­де, например в растворе или в газовой фазе, то взаимодействие реагирующих веществ происходит во всем объеме. Такие реак­ции называют гомогенными .

(v гомог) определя­ется как изменением количества вещества в еди­ницу времени в единице объема:

где Δn - изменение числа молей одного вещества (чаще всего исходного, но может быть и продукта реакции); Δt - интервал времени (с, мин); V - объем газа или раствора (л).

Поскольку отношение количества вещества к объему представляет собой молярную концентра­цию С, то

Таким образом, скорость гомогенной реакции определяется как изменение концентрации одного из веществ в единицу времени:

если объем системы не меняется.

Если реакция идет между веществами, находя­щимися в разных агрегатных состояниях (напри­мер, между твердым веществом и газом или жид­костью), или между веществами, неспособными образовывать гомогенную среду (например, между несмешивающимися жидкостями), то она прохо­дит только на поверхности соприкосновения ве­ществ. Такие реакции называют гетерогенными .

Определяется как изменение количества вещества в единицу вре­мени на единице поверхности.

где S - площадь поверхности соприкосновения ве­ществ (м 2 , см 2).

Изменение количества ве­щества, по которому опреде­ляют скорость реакции, - это внешний фактор, наблюда­емый исследователем. По сути, все процессы осуществляются на микроуровне. Очевидно, для того, чтобы какие-то частицы прореагировали, они прежде всего должны столкнуться, причем столкнуться эффективно: не раз­лететься, как мячики, в разные стороны, а так, чтобы в частицах разрушились или ослабли «старые связи» и смогли образоваться «новые», а для этого частицы должны обладать достаточной энергией.

Расчетные данные показывают, что, например, в газах столкновения молекул при атмосферно давлении исчисляются миллиардами за 1 секунду, то есть все реакции должны были бы идти мгновен­но. Но это не так. Оказывается, что лишь очень не­большая доля молекул обладает необходимой энер­гией, приводящей к эффективному соударению.

Минимальный избыток энергии, который долж­на иметь частица (или пара частиц), чтобы произо­шло эффективное соударение, называют энергией активации E a .

Таким образом, на пути всех частиц, вступаю­щих в реакцию, имеется энергетический барьер, равный энергии активации E a . Когда он малень­кий, то находится много частиц, которые могут его преодолеть, и скорость реакции велика. В против­ном случае требуется «толчок». Когда вы подноси­те спичку, чтобы зажечь спиртовку, вы сообщаете дополнительную энергию E a , необходимую для эф­фективного соударения молекул спирта с молеку­лами кислорода (преодоление барьера).

Скорость химической реакции зависит от мно­гих факторов. Основными из них являются: при­рода и концентрация реагирующих веществ, дав­ление (в реакциях с участием газов), температура, действие катализаторов и поверхность реагирую­щих веществ в случае гетерогенных реакций .

Температура

При повышении температуры в большинстве случаев скорость химической реакции значительно возрастает. В XIX в. голландский химик Я. X. Вант- Гофф сформулировал правило:

Повышение темпе­ратуры на каждые 10 °С приводит к увеличению скорости реакции в 2-4 раза (эту величину назы­вают температурным коэффициентом реакции).

При повышении темпе­ратуры средняя скорость молекул, их энергия, число столкновений увеличиваются незначительно, зато резко по­вышается доля «активных» молекул, участвующих в эф­фективных соударениях, пре­одолевающих энергетичес­кий барьер реакции. Математически эта зависимость выражается со­отношением:

где v t 1 и v t 2 - скорости реакции соответственно при конечной t 2 и начальной t 1 температурах, а γ - температурный коэффициент скорости реакции, который показывает, во сколько раз увеличивается скорость реакции с повышением температуры на каждые 10 °С.

Однако для увеличения скорости реакции повы­шение температуры не всегда применимо, т. к. ис­ходные вещества могут начать разлагаться, могут испаряться растворители или сами вещества и т. д.

Эндотермические и экзотермические реакции

Реакция метана с кислородом воздуха, как известно, сопровождается выделением большого количества тепла. Поэтому ее используют в быту для приготовления пищи, нагревания воды и отопления. Природный газ, поступающий в дома по трубам, на 98% состоит именно из метана. Реакция оксида кальция (СаО) с водой тоже сопровождается выделением большого количества тепла.

О чем могут говорить эти факты? При образовании новых химических связей в продуктах реакции выделяется больше энергии, чем требуется на разрыв химических связей в реагентах. Избыток энергии выделяется в виде тепла, а иногда и света.

СН 4 + 2О 2 = СО 2 + 2Н 2 О + Q (энергия (свет, тепло));

СаО + Н 2 О = Са(ОН) 2 + Q (энергия (тепло)).

Такие реакции должны протекать легко (как легко катится под гору камень).

Реакции, в которых энергия выделяется, называются ЭКЗОТЕРМИЧЕСКИМИ (от латинского «экзо» – наружу).

Например, многие окислительно-восстановительные реакции являются экзотермическими. Одна из таких красивых реакций — внутримолекулярное окисление-восстановление, протекающее внутри одной и той же соли — дихромата аммония (NH 4) 2 Cr 2 O 7:

(NH 4) 2 Cr 2 O 7 = N 2 + Cr 2 O 3 + 4 H 2 O + Q (энергия).

Другое дело – обратные реакции. Они аналогичны закатыванию камня в гору. Получить метан из CO 2 и воды до сих пор не удается, а для получения негашеной извести СаО из гидроксида кальция Са(ОН) 2 требуются сильное нагревание. Такая реакция идет только при постоянном притоке энергии извне:

Са(ОН) 2 = СаО + Н 2 О — Q (энергия (тепло))

Это говорит о том, что разрыв химических связей в Ca(OH) 2 требует большей энергии, чем может выделиться при образовании новых химических связей в молекулах CaO и H 2 O.

Реакции, в которых энергия поглощается, называются ЭНДОТЕРМИЧЕСКИМИ (от «эндо» – внутрь).

Концентрация реагирующих веществ

Изменение давления при участии в реакции га­зообразных веществ также приводит к изменению концентрации этих веществ.

Чтобы осуществилось химическое взаимодей­ствие между частицами, они должны эффективно столкнуться. Чем больше концентрация реагирую­щих веществ, тем больше столкновений и, соответ­ственно, выше скорость реакции. Например, в чи­стом кислороде ацетилен сгорает очень быстро. При этом развивается температу­ра, достаточная для плавле­ния металла. На основе боль­шого экспериментального материала в 1867 г. норвеж­цами К. Гульденбергом и П. Вааге и независимо от них в 1865 г. русским ученым Н. И. Бекетовым был сформулирован основной закон химической кинетики, устанавливающий зависимость скорости реакции от концентрации реагирующих веществ.

Скорость химической реакции пропорциональ­на произведению концентраций реагирующих ве­ществ, взятых в степенях, равных их коэффици­ентам в уравнении реакции.

Этот закон называют также законом действую­щих масс.

Для реакции А + В = D этот закон выразится так:

Для реакции 2А + В = D этот закон выразится так:

Здесь С А, С В - концентрации веществ А и В (моль/л); k 1 и k 2 - коэффициенты пропорцио­нальности, называемые константами скорости ре­акции.

Физический смысл константы скорости реак­ции нетрудно установить - она численно равна скорости реакции, в которой концентрации реаги­рующих веществ равны 1 моль/л или их произ­ведение равно единице. В таком случае ясно, что константа скорости реакции зависит только от тем­пературы и не зависит от концентрации веществ.

Закон действующих масс не учитывает кон­центрации реагирующих веществ, находящихся в твердом состоянии , т. к. они реагируют на по­верхности и их концентрации обычно являются постоянными.

Например, для реакции горения угля выражение скорости реакции должно быть запи­сано так:

т. е. скорость реакции пропорциональна только концентрации кислорода.

Если же уравнение реакции описывает лишь суммарную химическую реакцию, проходящую в несколько стадий, то скорость такой реакции мо­жет сложным образом зависеть от концентраций исходных веществ. Эта зависимость определяется экспериментально или теоретически на основании предполагаемого механизма реакции.

Действие катализаторов

Можно увеличить скорость реакции, используя специальные вещества, которые изменяют меха­низм реакции и направляют ее по энергетически более выгодному пути с меньшей энергией актива­ции. Их называют катализаторами (от лат. katalysis - разрушение).

Катализатор действует как опытный провод­ник, направляющий группу туристов не через вы­сокий перевал в горах (его преодоление требует много сил и времени и не всем до­ступно), а по известным ему обходным тропам, по кото­рым можно преодолеть гору значительно легче и быстрее.

Правда, по обходному пу­ти можно попасть не совсем туда, куда ведет главный перевал. Но иногда именно это и требуется! Именно так действуют катализаторы, ко­торые называют селективны­ми. Ясно, что нет необходи­мости сжигать аммиак и азот, зато оксид азота (II) находит использование в производстве азотной кислоты.

Катализаторы - это вещества, участвующие в химической реакции и изменяющие ее скорость или направление, но по окончании реакции остаю­щиеся неизменными количественно и качественно.

Изменение скорости химической реакции или ее направления с помощью катализатора называ­ют катализом. Катализаторы широко использу­ют в различных отраслях промышленности и на транспорте (каталитические преобразователи, пре­вращающие оксиды азота выхлопных газов авто­мобиля в безвредный азот).

Различают два вида катализа.

Гомогенный катализ , при котором и катализа­тор, и реагирующие вещества находятся в одном агрегатном состоянии (фазе).

Гетерогенный катализ , при котором катализа­тор и реагирующие вещества находятся в разных фазах. Например, разложение пероксида водорода в присутствии твердого катализатора оксида мар­ганца (IV):

Сам катализатор не рас­ходуется в результате реак­ции, но если на его поверх­ности адсорбируются другие вещества (их называют каталитическими ядами), то поверхность становится не­работоспособной, требуется регенерация катализатора. Поэтому перед проведени­ем каталитической реакции тщательно очищают исход­ные вещества.

Например, при производстве серной кислоты контактным способом используют твердый катали­затор - оксид ванадия (V) V 2 O 5:

При производстве метанола используют твер­дый «цинкохромовый» катализатор (8ZnO Cr 2 O 3 х CrO 3):

Очень эффективно работают биологические ка­тализаторы - ферменты. По химической природе это белки. Благодаря им в живых организмах при невысокой температуре с большой скоростью про­текают сложные химические реакции.

Известны другие интересные вещества - ин­гибиторы (от лат. inhibere - задерживать). Они с высокой скоростью реагируют с активными ча­стицами с образованием малоактивных соедине­ний. В результате реакция резко замедляется и за­тем прекращается. Ингибиторы часто специально добавляют в разные вещества, чтобы предотвратить нежелательные процессы.

Например, с помощью ингибиторов стабилизи­руют растворы пероксида водорода.

Природа реагирующих веществ (их состав, строение)

Значение энергии активации является тем факто­ром, посредством которого сказывается влияние при­роды реагирующих веществ на скорость реакции.

Если энергия активации мала (< 40 кДж/моль), то это означает, что значительная часть столкнове­ний между частицами реагирующих веществ при­водит к их взаимодействию, и скорость такой ре­акции очень большая. Все реакции ионного обмена протекают практически мгновенно, ибо в этих ре­акциях участвуют разноименно заряженные ионы, и энергия активации в данных случаях ничтожно мала.

Если энергия активации велика (> 120 кДж/моль), то это означает, что лишь ничтожная часть стол­кновений между взаимодействующими частицами приводит к реакции. Скорость такой реакции поэтому очень мала. Например, протекание реакции синтеза аммиака при обычной температуре заме­тить практически невозможно.

Если энергии активации химических ре­акций имеют промежуточные значения (40­120 кДж/моль), то скорости таких реакций будут средними. К таким реакциям можно отнести взаи­модействие натрия с водой или этиловым спиртом, обесцвечивание бромной воды этиленом, взаимо­действие цинка с соляной кислотой и др.

Поверхность соприкосновения реагирующих веществ

Скорость реакций, иду­щих на поверхности веществ, т. е. гетерогенных, зависит при прочих равных условиях от свойств этой поверхности. Известно, что растер­тый в порошок мел гораздо быстрее растворяется в соля­ной кислоте, чем равный по массе кусочек мела.

Увеличение скорости реакции объясняется в первую очередь увеличением поверхности со­прикосновения исходных веществ , а также рядом других причин, например, нарушением структуры «правильной» кристаллической решетки. Это при­водит к тому, что частицы на поверхности обра­зующихся микрокристаллов значительно реакци­онноспособнее, чем те же частицы на «гладкой» поверхности.

В промышленности для проведения гетероген­ных реакций используют «кипящий слой», чтобы увеличить поверхность соприкосновения реагиру­ющих веществ, подвод исходных веществ и отвод продуктов. Например, при производстве серной кислоты с помощью «кипящего слоя» проводят об­жиг колчедана.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Некоторые химические реакции происходят практически мгновенно (взрыв кислородно-водородной смеси, реакции ионного обмена в водном растворе), вторые — быстро (горение веществ, взаимодействие цинка с кислотой), третьи — медленно (ржавление железа, гниение органических остатков). Известны настолько медленные реакции, что человек их просто не может заметить. Так, например, преобразование гранита в песок и глину происходит в течение тысяч лет.

Другими словами, химические реакции могут протекать с разной скоростью .

Но что же такое скорость реакции ? Каково точное определение данной величины и, главное, ее математическое выражение?

Скоростью реакции называют изменение количества вещества за одну единицу времени в одной единице объема. Математически это выражение записывается как:

Где n 1 и n 2 – количество вещества (моль) в момент времени t 1 и t 2 соответственно в системе объемом V .

То, какой знак плюс или минус (±) будет стоять перед выражением скорости, зависит от того, на изменение количества какого вещества мы смотрим – продукта или реагента.

Очевидно, что в ходе реакции происходит расход реагентов, то есть их количество уменьшается, следовательно, для реагентов выражение (n 2 — n 1) всегда имеет значение меньше нуля. Поскольку скорость не может быть отрицательной величиной, в этом случае перед выражением нужно поставить знак «минус».

Если же мы смотрим на изменение количества продукта, а не реагента, то перед выражением для расчета скорости знак «минус» не требуется, поскольку выражение (n 2 — n 1) в этом случае всегда положительно, т.к. количество продукта в результате реакции может только увеличиваться.

Отношение количества вещества n к объему, в котором это количество вещества находится, называют молярной концентрацией С :

Таким образом, используя понятие молярной концентрации и его математическое выражение, можно записать другой вариант определения скорости реакции:

Скоростью реакции называют изменение молярной концентрации вещества в результате протекания химической реакции за одну единицу времени:

Факторы, влияющие на скорость реакции

Нередко бывает крайне важно знать, от чего зависит скорость той или иной реакции и как на нее повлиять. Например, нефтеперерабатывающая промышленность в буквальном смысле бьется за каждые дополнительные полпроцента продукта в единицу времени. Ведь учитывая огромное количество перерабатываемой нефти, даже полпроцента вытекает в крупную финансовую годовую прибыль. В некоторых же случаях крайне важно какую-либо реакцию замедлить, в частности коррозию металлов.

Так от чего же зависит скорость реакции? Зависит она, как ни странно, от множества различных параметров.

Для того чтобы разобраться в этом вопросе прежде всего давайте представим, что происходит в результате химической реакции, например:

Написанное выше уравнение отражает процесс, в котором молекулы веществ А и В, сталкиваясь друг с другом, образуют молекулы веществ С и D.

То есть, несомненно, для того чтобы реакция прошла, как минимум, необходимо столкновение молекул исходных веществ. Очевидно, если мы повысим количество молекул в единице объема, число столкновений увеличится аналогично тому, как возрастет частота ваших столкновений с пассажирами в переполненном автобусе по сравнению с полупустым.

Другими словами, скорость реакции возрастает при увеличении концентрации реагирующих веществ.

В случае, когда один из реагентов или сразу несколько являются газами, скорость реакции увеличивается при повышении давления, поскольку давление газа всегда прямо пропорционально концентрации составляющих его молекул.

Тем не менее, столкновение частиц является, необходимым, но вовсе недостаточным условием протекания реакции. Дело в том, что согласно расчетам, число столкновений молекул реагирующих веществ при их разумной концентрации настолько велико, что все реакции должны протекать в одно мгновение. Тем не менее, на практике этого не происходит. В чем же дело?

Дело в том, что не всякое соударение молекул реагентов обязательно будет эффективным. Многие соударения являются упругими – молекулы отскакивают друг от друга словно мячи. Для того чтобы реакция прошла, молекулы должны обладать достаточной кинетической энергией. Минимальная энергия, которой должны обладать молекулы реагирующих веществ для того, чтобы реакция прошла, называется энергией активации и обозначается как Е а. В системе, состоящей из большого количества молекул, существует распределение молекул по энергии, часть из них имеет низкую энергию, часть высокую и среднюю. Из всех этих молекул только у небольшой части молекул энергия превышает энергию активации.

Как известно из курса физики, температура фактически есть мера кинетической энергии частиц, из которых состоит вещество. То есть, чем быстрее движутся частицы, составляющие вещество, тем выше его температура. Таким образом, очевидно, повышая температуру мы по сути увеличиваем кинетическую энергию молекул, в результате чего возрастает доля молекул с энергией, превышающей Е а и их столкновение приведет к химической реакции.

Факт положительного влияния температуры на скорость протекания реакции еще в 19м веке эмпирически установил голландский химик Вант Гофф. На основании проведенных им исследований он сформулировал правило, которое до сих пор носит его имя, и звучит оно следующим образом:

Скорость любой химической реакции увеличивается в 2-4 раза при повышении температуры на 10 градусов.

Математическое отображение данного правила записывается как:

где V 2 и V 1 – скорость при температуре t 2 и t 1 соответственно, а γ – температурный коэффициент реакции, значение которого чаще всего лежит в диапазоне от 2 до 4.

Часто скорость многих реакций удается повысить, используя катализаторы .

Катализаторы – вещества, ускоряющие протекание какой-либо реакции и при этом не расходующиеся.

Но каким же образом катализаторам удается повысить скорость реакции?

Вспомним про энергию активации E a . Молекулы с энергией меньшей, чем энергия активации в отсутствие катализатора друг с другом взаимодействовать не могут. Катализаторы, изменяют путь, по которому протекает реакция подобно тому, как опытный проводник проложит маршрут экспедиции не напрямую через гору, а с помощью обходных троп, в результате чего даже те спутники, которые не имели достаточно энергии для восхождения на гору, смогут перебраться на другую ее сторону.

Не смотря на то что катализатор при проведении реакции не расходуется, тем не менее он принимает в ней активное участие, образуя промежуточные соединения с реагентами, но к концу реакции возвращается к своему изначальному состоянию.

Кроме указанных выше факторов, влияющих на скорость реакции, если между реагирующими веществами есть граница раздела (гетерогенная реакция), скорость реакции будет зависеть также и от площади соприкосновения реагентов. Например, представьте себе гранулу металлического алюминия, которую бросили в пробирку с водным раствором соляной кислоты. Алюминий – активный металл, который способен реагировать с кислотами неокислителями. С соляной кислотой уравнение реакции выглядит следующим образом:

2Al + 6HCl → 2AlCl 3 + 3H 2

Алюминий представляет собой твердое вещество, и это значит, что реакция с соляной кислотой идет только на его поверхности. Очевидно, что если мы увеличим площадь поверхности, предварительно раскатав гранулу алюминия в фольгу, мы тем самым предоставим большее количество доступных для реакции с кислотой атомов алюминия. В результате этого скорость реакции увеличится. Аналогичным образом увеличения поверхности твердого вещества можно добиться измельчением его в порошок.

Также на скорость гетерогенной реакции, в которой реагирует твердое вещество с газообразным или жидким, часто положительно влияет перемешивание, что связано с тем, что в результате перемешивания достигается удаление из зоны реакции скапливающихся молекул продуктов реакции и «подносится» новая порция молекул реагента.

Последним следует отметить также огромное влияние на скорость протекания реакции и природы реагентов. Например, чем ниже в таблице Менделеева находится щелочной металл, тем быстрее он реагирует с водой, фтор среди всех галогенов наиболее быстро реагирует с газообразным водородом и т.д.

Резюмируя все вышесказанное, скорость реакции зависит от следующих факторов:

1) концентрация реагентов: чем выше, тем больше скорость реакции.

2) температура: с ростом температуры скорость любой реакции увеличивается.

3) площадь соприкосновения реагирующих веществ: чем больше площадь контакта реагентов, тем выше скорость реакции.

4) перемешивание, если реакция происходит меду твердым веществом и жидкостью или газом перемешивание может ее ускорить.

С какой скоростью протекает та или иная химическая реакция зависит от множества факторов. Что же это за факторы, и как они влияют на химическую реакцию?

Скорость химической реакции

Скорость химической реакции определяется изменением концентрации одного из реагирующих веществ в единицу времени при неизменном объеме системы.

Выражение для средней скорости химической реакции имеет вид:

v=c 2 -c 1 /t 2 -t 1 , где

Рис. 1. формула скорости химической реакции.

с 1 – концентрация вещества в момент времени t 1 ,

с 2 – концентрация вещества в момент времени t 2 (t 2 больше t 1)

Если концентрация относится к веществу, расходующемуся в процессе реакции, то соблюдаются следующие условия:

с 2 больше с 1 ; дельта с = с 2 -с 1 меньше 0

Если концентрация вещества относится к продукту реакции, то:

с 2 больше с 1 ; дельта с = с 2 -с 1 ,больше 0

Скорость реакции всегда положительна, поэтому в уравнении для средней скорости реакции перед дробью ставится знак минус.

Концентрацию вещества обычно выражают в моль/л, а время в секундах

По мере взаимодействия веществ концентрации непрерывно меняются, меняется и скорость химической реакции. В химической кинетике пользуются понятием истинной скорости, то есть изменением концентрации вещества за бесконечно малый промежуток времени.

Истинная скорость выражается производной концентрации данного вещества во времени

Факторы

Существует несколько факторов, влияющих на скорость химических реакций. Скорость химической реакции зависит от влияния природы реагирующих веществ, от концентрации реагирующих веществ, от температуры, от присутствия катализаторов и ингибиторов, а для веществ в твердом состоянии – от поверхности реагирующих веществ и других условий:

  • природа реагирующих веществ . Химическая реакция протекает при соударении реагирующих частиц. Это соударение будет эффективным, если частица будет обладать определенным запасом энергии (энергия активации Еа). Значение Еа меньше у более активных веществ, в результате в реакцию вступает большее их число, реакция идет быстрее. Так, если реакция водорода с фтором или хлором будет протекать в темноте, то в случае с хлором скорость будет очень мала, а фтор будет реагировать со взрывом:

H 2 + F 2 =2HF (взрыв)

H 2 +Cl 2 =2HCl (скорость очень мала) – хлороводород

Рис. 2. Хлороводород.

  • концентрация реагирующих веществ . Число столкновений частиц пропорционально числу частиц в единице объема, то есть концентрации. Зависимость выражается законом действия масс: скорость химической реакции пропорциональна концентрации реагирующих веществ. Закон действия масс действителен для реакций, протекающих в гомогенной (однофазной – жидкой или газовой) среде. Если реакция протекает в гетерогенной среде, то скорость зависит от состояния межфазной поверхности, на которой протекает реакция. При этом концентрация твердого вещества почти не изменяется и не учитывается уравнением закона действия масс.

Если в реакции участвуют газы, то скорость реакции зависит от давления: при увеличении давления пропорционально увеличиваются концентрации газов.

  • температура . при увеличении температуры число активных молекул возрастает, и скорость реакции увеличивается. Согласно эмпирическому правилу Я.Г. Вант-Гоффа, при увеличении температуры на 10 градусов скорость реакции возрастает в 2-4 раза.
  • катализаторы . Катализатор – это вещество, которое увеличивает скорость реакции, активно участвует в ней, но само в итоге не расходуется и химически не изменяется.

Бывают отрицательные катализаторы, замедляющие реакцию, их называют ингибиторами.

Рис. 3. Ингибиторы определение.

Роль катализатора – снижение энергии активации. Катализ бывает гомогенный (катализатор в той же фазе, что и реагенты) и гетерогенный (катализатор в другой фазе). В живых организмах процессы катализируются ферментами – биологическими катализаторами белковой природы.

Что мы узнали?

В 8 классе по химии важной темой является «Скорость химической реакции». Скорость химической реакции определяется изменением концентрации реагирующих веществ или продуктов реакции за единицу времени. Факторами, влияющими на эту скорость являются температура, давление, природа веществ, катализаторы.

Тест по теме

Оценка доклада

Средняя оценка: 4.2 . Всего получено оценок: 97.

МБОУ «Элистинский технический лицей»,

учитель химии Полоусова В.В.

Урок химии в 11 классе

Тема урока:

Скорость химической реакции. Факторы, влияющие на скорость химических реакций.

Урок химии в 11 классе

Тема урока: Скорость химической реакции. Факторы, влияющие на скорость химических реакций.

Тип урока : комбинированный урок.

Форма учебной деятельности : коллективная, парная, индивидуальная, химический эксперимент.

Методы: проблемно-интегративный, эвристический, объяснительно-иллюстрированный.

Оборудование: на столах учащихся:

Приборы: набор пробирок, штатив.

Реактивы: цинк в гранулах, магний в стружке, алюминий в гранулах, медь в проволоке, кусочки и порошок известняка, растворы серной и соляной кислот (5- и 10 % -ные растворы), вода, растворы: тиосульфата натрия, сульфата меди (II ), роданида калия, хлорида железа (III ),

«Скажи и я забуду; покажи и я запомню,

дай действовать и я научусь»

Китайская мудрость

Цели урока:

Образовательные:

    Продолжить формирование понятия скорости химической реакции

    Обеспечить работу по изучению факторов, влияющих на скорость реакции, опираясь на субъектный опыт учащихся.

    Закрепление навыков лабораторной работы.

Развивающие:

    Развивать психические процессы (внимание, память, мышление).

    Развивать умения работать в группе, исследовательские навыки.

Воспитательные:

    Формирование научной картины мира.

    Создание условий для развития коммуникативных навыков.

Ход урока

    Организационный этап.

    Этап актуализации знаний (видеосюжет «Скорость химической реакции 09сек-1мин)

Вступительное слово учителя.

В жизни часто приходится управлять химической реакцией. Для разжигания угля в топке нужно ускорить реакцию. А для тушения пожара – замедлить и прекратить совсем. Выплавку металла на металлургических заводах нужно ускорить, а процесс ржавления железа по возможности, замедлить, поскольку прекратить совсем эту реакцию мы не можем. Чтобы управлять скоростью реакции, нужно знать, от чего она зависит.

«Что может повлиять на изменение скорости химической реакции?» Учащиеся высказывают предположения. Для подтверждения своих гипотез учащимся предлагается выполнить ряд экспериментальных заданий. Задания выполняются в группах. Каждая группа получает свою инструкцию. Результаты работы оформляются в виде таблицы .

    Этап исследования – лабораторный эксперимент ,

Опыт №1. Зависимость скорости реакции от природы реагирующих веществ.

Учащиеся выполняют опыт по исследованию растворимости двух металлов в соляной кислоте. (приложение 1)

Первый фактор - это природа реагирующих веществ. Учащиеся на доске и в тетрадях записывают уравнения реакций:

Zn + 2HCl = ZnCl 2 + H 2 Cu + HCl - реакция не идёт.

(По ходу повторяем активность Ме в ряду напряжений)

Опыт №2. Зависимость скорости реакции от площади поверхности соприкосновения.

Учащихся проверяют

    скорость растворимости карбоната кальция в двух видах: в виде порошка и в виде кусочка (известняк) в соляной кислоте.

    скорость взаимодействия раствора соляной кислоты с гранулами и порошком цинка.

На основании наблюдений учащиеся делают вывод, что прежде, чем проводить реакцию, надо измельчить вещества, а ещё лучше вести реакции в растворах.

Второй фактор – площадь соприкосновения реагирующих веществ. Чем она больше, тем быстрее идёт реакция. Учитель поясняет, чтобы происходила реакция, необходимо наличие частиц участвующих веществ: чем их больше, тем чаще они встречаются, тем быстрее идёт реакция. Учащиеся записывают уравнение реакции:

C аСО 3 + 2HCl = C аCl 2 + CO 2 + H 2 О

Опыт №3. Зависимость скорости реакции от концентрации.

Учащиеся испытывают

    скорость растворимости цинка в соляной кислоте различной концентрации.

Учащиеся делают соответствующий вывод: третий фактор – концентрация реагирующих веществ. (Объяснение учителя аналогично предыдущему). Учащиеся записывают уравнение реакции:

Zn + 2HCl = ZnCl 2 + H 2

    скорость взаимодействия растворов тиосульфата натрия разной концентрации с раствором серной кислоты.

Вывод: Скорость химических реакций прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях их коэффициентов в уравнении реакции. Это основной закон химической кинетики .

(Сформулирован норвежскими учеными Гульбергом и Вааге и, независимо от них, русским химиком Н.Н. Бекетовым.

nA+ mB -> pC

V = k [A] п [B] m

Это кинетическое уравнение скорости химической реакции.

[A], [B] (моль/л) – концентрации исходных веществ; n, m – коэффициенты в уравнении реакции; k – константа скорости.

Физический смысл константы скорости (k):

если [A] = [B] = 1 моль/л, =>,. υ = k. Это скорость данной реакции в стандартных условиях.

Примеры:

1. 2Н 2 (г) + О 2 (г) =2Н 2 О(г)

υ = k 2

Как изменится скорость этой реакции, если концентрацию каждого из исходных веществ увеличить в 2 раза?

υ = k(2) 2 (2);

2 и 2 – новые концентрации исходных веществ.

υ = k 4 2 2

υ = 8k 2 .

Сравним с уравнением (1) – скорость увеличилась в 8 раз.

2. 2Сu (тв.) + О 2 (г) = 2СuO (тв.)

υ = k 2 , однако концентрация твердого вещества исключается из уравнения – ее невозможно изменить – постоянная величина.

Cu тв =>[ Сu] = const

υ = k

Опыт №4. Зависимость скорости реакции от температуры.

Учащиеся сравнивают скорость химической реакции взаимодействия цинка с соляной кислотой при разных температурах и определяют зависимость скорости химической реакции взаимодействия тиосульфата натрия с серной кислотой от температуры.

Помутнение обусловлено образованием серы:

Na 2 S 2 O 3 + H 2 SO 4 = Na 2 SO 4 + SO 2 + S ↓+ H 2 O

Учащиеся делают выводы, а учитель рассказывает им о правиле Вант-Гоффа:

При повышении температуры на каждые 10ºС скорость большинства реакций увеличивается в 2-4 раза.

Число, показывающее, во сколько раз увеличивается скорость реакции, обозначается латинской буквой γ и называется температурным коэффициентом.

Изменение скорости реакции можно посчитать по следующей формуле:

v 2 /v 1 = γ (t 1 – t 2)/10 ,

где v 1 – скорость реакции до нагревания;

v 2 – скорость реакции после нагревания;

t 1 – температура до нагревания;

t 2 – температура после нагревания;

γ – температурный коэффициент.

Учащиеся записывают формулу в тетрадях. Итак, четвёртый фактор – температура.

Объяснение учителя: необходимо не только наличие, но и движение частиц реагирующих веществ. А чем выше температура, тем более интенсивным становится движение, тем чаще они встречаются друг с другом, тем быстрее идёт реакция.

Решение задачи : во сколько раз изменится скорость реакции при увеличении температуры от 200 до 600ºС. Температурный коэффициент равен 2. (Один из учащихся вызывается к доске).

Опыт №5. Зависимость скорости реакции от катализатора

Учащимся предложено рассмотреть влияние катализатора сульфата меди на скорость взаимодействия роданида железа (III ) и раствора тиосульфата натрия.

Реакция протекает согласно уравнению:

CuSO 4

2Fe(NCS) 3 + Na 2 S 2 O 3 2Fe(NCS) 2 + 2NaNCS +Na 2 S 4 O 6

И провести опыты с картофелем и перекисью водорода. В 1-ю пробирку положены кусочки сырого картофеля, во вторую - вареного. Добавляем перекись водорода в обе пробирки и наблюдаем бурное выделение газа только в первой, так как в сыром картофеле содержится фермент каталаза, ускоряющий разложение перекиси водорода на кислород и воду. В вареном картофеле фермент по своей природе белок свернулся - денатурировал. В отсутствии катализатора реакции идут медленно.

2Н 2 О 2 =2Н 2 О + О 2

Так что же такое катализатор? Сформулируем ответ.

IV этап. Закрепление и первичная проверка знаний .

Решение тестовых заданий ЕГЭ (при помощи слайдов презентации №9-14) (устно, поочередно спрашивая учащихся).

V . Рефлексия. Самопроверка.

Домашнее задание. § 15, упр.1-7стр.136;

Список использованной литературы :

    Габриелян, О.С. Химия. 11кл. – М.: Дрофа, - 2009.

    Габриелян, О.С, Воскобойникова И.П. Настольная книга для учителя. Химия. 8 кл. – М.: Дрофа, 2003.

    Куимова, О.К. Исследование как метод изучения нового материала// Химия в школе. – 2001. - №1. – с.26-31.

    Время в химии: скорость химических реакций / Энциклопедия для детей - М.: Аванта, 2003г.- Химия, том 17- с.116-123.

Лабораторная работа (протокол)

Ф.И. учащегося_______________________

Изучение условий, влияющих на скорость химических реакций

Приборы: набор пробирок, держатель для пробирок, штатив, спиртовка, лучинка, спички.

Реактивы: цинк в гранулах, магний в стружке, алюминий в гранулах, медь в проволоке, кусочки и порошок известняка, растворы серной и соляной кислот (5- и 10 % -ные растворы), вода, растворы: тиосульфата натрия, сульфата меди (II ), роданида калия, хлорида железа (III ),

Группа 1

Влияние температуры на скорость химической реакции.

Исходные вещества

Признаки химической реакции

Уравнения химических реакций


Тест (проверка знаний)

Группа 2

Влияние концентрации реагирующих веществ на скорость химической реакции.

Исходные вещества

Признаки химической реакции

Уравнения химических реакций

Выводы о скорости протекания химической реакции


Группа 3

Фактор 1 Исследование влияния природы реагирующих веществ на скорость химической реакции.

Фактор 2 . Влияние катализатора на скорость химической реакции

Исходные вещества

Признаки химической реакции

Уравнения химических реакций

Выводы о скорости протекания химической реакции


Группа 4

Влияние поверхности соприкосновения реагирующих веществ на скорость химической реакции .

Исходные вещества

Признаки химической реакции

Уравнения химических реакций

Выводы о скорости протекания химической реакции


Приложение 2.

Хронометраж урока.

Этапы урока

Ход урока

Временные затраты

30 мин (40мин)

1. Организация класса

Готовность класса к уроку, фиксация в журнале отсутствующих учащихся на уроке.

2. Актуализация знаний.

1. Объявляется тема урока, ставится задача, обсуждается с учащимися (слайд 1).

3. Усвоение новых знаний и способов действий.

1. Проведение эксперимента учащимися. «Факторы, влияющие на скорость химической реакции» (теория вопроса и проведение учащимися эксперимента)

- природа реагирующих веществ (слайд 4) ;

- поверхность соприкосновения реагирующих веществ (слайд 5);

Эксперимент, выводы в протоколе;

Концентрация реагирующих веществ (слайд 6);

Проведение эксперимента, выводы;

Закон действующих масс, введение понятия (слайд8);

Закрепление знаний по фактору 3 (слайд 10,11), работа в группах;

- температура (слайд 12,13);

Проведение опыта;

- катализатор , фронтальная беседа, с применением знаний из курса 9 класса (слайд14);

Выводы (слайд 4).

4. Закрепление первичных знаний о скорости химической реакции.

1. Закрепление знаний о скорости химической реакции, Работа с тестами на компьютере

5 мин.(7 мин)

7. Контроль и самопроверка знаний.

1. слайд 17- ответы на тестирование, для самопроверки)

2. Сдача протоколов

8. Подведение итогов занятия, выставление и комментирование оценок за работу на уроке.

1. Выводы по уроку (слайд16)

9. Домашнее задание.

1. Инструктаж по домашнему заданию слайд 18

Приложение 3

Проверка знаний (закрепление) (ЕГЭ задание В19)

Выберите один правильный ответ и впишите его в бланк ответов. Каждый правильный ответ оценивается в 1 балл.

«5» - 10 баллов, «4»- 8-9 баллов, «3» - 5-7 баллов, «2» менее 5 баллов.

1. B 19 № 22. Ско­рость ре­ак­ции азота с во­до­ро­дом по­ни­зит­ся при

1) умень­ше­нии тем­пе­ра­ту­ры 2) уве­ли­че­нии кон­цен­тра­ции азота

3) ис­поль­зо­ва­нии ка­та­ли­за­то­ра 4) уве­ли­че­нии дав­ле­ния

2. B 19 № 164. Ско­рость ре­ак­ции азота с во­до­ро­дом умень­шит­ся при

1) по­ни­же­нии тем­пе­ра­ту­ры 2) уве­ли­че­нии кон­цен­тра­ции азота

3) ис­поль­зо­ва­нии ка­та­ли­за­то­ра 4) по­вы­ше­нии дав­ле­ния

3. B 19 № 2345. Для уве­ли­че­ния ско­ро­сти хи­ми­че­ской ре­ак­ции

не­об­хо­ди­мо

1) уве­ли­чить дав­ле­ние

2) умень­шить тем­пе­ра­ту­ру

3) уве­ли­чить кон­цен­тра­цию

4) умень­шить ко­ли­че­ство маг­ния

4. B 19 № 2431. Ско­рость вза­и­мо­дей­ствия цинка с рас­тво­ром сер­ной кис­ло­ты воз­растёт, если

1) из­мель­чить ме­талл

2) уве­ли­чить дав­ле­ние

3) по­ни­зить тем­пе­ра­ту­ру ре­ак­ци­он­ной смеси

4) раз­ба­вить рас­твор

5. B 19 № 2560. С наи­боль­шей ско­ро­стью при ком­нат­ной тем­пе­ра­ту­ре про­те­ка­ет ре­ак­ция между

1) медью и кис­ло­ро­дом

2) рас­тво­ра­ми кар­бо­на­та на­трия и хло­ри­да каль­ция

3) цин­ком и серой

4) маг­ни­ем и со­ля­ной кис­ло­той

1) Давление 2) Катализатор 3) Концентрация 4) Форма сосуда, в котором протекает реакция
А2. Фактор, влияющий на смещение химического равновесия:
1) Вид химической связи 2) Катализатор 3) Природа реагирующих веществ 4) Температура
А3. С увеличением концентрации азота в 2 раза скорость прямой реакции, уравнение которой N2(г)+O2(г)↔2NO(г)
1) Не изменится 2) Увеличится в 2 раза 3) Увеличится в 4 раза 4) Уменьшится в 4 раза
А4. С увеличением давления в 5 раз скорость прямой реакции, уравнение которой 2NO(г)+O2(г)↔2NO2(г), увеличится в:
1) 5 раз 2) 25 раз 3) 75 раз 4) 125 раз
А5. При повышении температуры на 10°С (температурный коэффициент равен 2) скорость химической реакции увеличивается:
1) в 2 раза 2) в 4 раза 3) в 8 раз 4) в 16 раз
А6. С увеличением давления равновесие обратимой реакции, уравнение которой C2H4(г)+H2O(г)↔C2H5OH(г)
1) Не изменится 2) Сместится в сторону продуктов реакции 3) Сместится в сторону исходных веществ
А7. Для смещения химического равновесия обратимой реакции 2SO2(г)+O2(г)↔2SO3(г)+Q в сторону исходных веществ необходимо:
1) Увеличить давление 2) Повысить температуру 3) Понизить температуру 4) Ввести катализатор
А8. Максимальная скорость химической реакции при взаимодействии веществ, формулы которых
1) Zn(гранулы) + HCl 2) Zn(пыль) + HCl 3) Pb + HCl 4) Fe + HCl
А9. Повышение температуры смещает химическое равновесие вправо в обратимой реакции, уравнение которой:
1) 2H2 + O2 ↔ 2H2O + Q 2) SO2 + H2O ↔ H2SO3 + Q
3) 2NO + O2 ↔ 2NO2 + Q 4) C4H10 ↔ C4H8 + H2 – Q
А10. Скорость химической реакции, уравнение которой Mg + 2HCl = MgCl2 + H2, при уменьшении концентрации кислоты за каждые 10 с на 0,04 моль/л равна:
1) 0,00004 моль/(л с) 2) 0,0004 моль/(л с) 3) 0,004 моль/(л с) 4) 0,04 моль/(л с)
В заданиях В1-В2 установите соответствие. Ответ запишите в виде последовательности цифр.
2 балла за верно выполненное задание.
В1. Установите соответствие между уравнением реакции и формулой для определения скорости реакции:
Уравнение реакции
Формула для определения скорости реакции
А) C(т) + O2(г) = CO2(г)
1)
Б) С(т) + CO2(г) = 2CO(г)
2)
В) Mg(т) + 2HCl(ж) = MgCl2(г) + H2(г)
3)
4)
А
Б
В
В2. Установите соответствие между фактором и смещением равновесия для реакции, уравнение которой C2H4(г)+H2(г)↔C2H6(г) + Q
Фактор
Положение равновесия
А) Повышение давления
1) Сместится вправо
Б) Увеличение температуры
2) Сместится влево
В) Увеличение концентрации C2H4
3) Не изменится
Г) Уменьшение концентрации C2H6
Д) Применение катализатора
А
Б
В
Г
Д
Для задания С1 дайте полный развернутый ответ.
С1(5 баллов). Почему, если смешать твердый нитрат свинца (Pb(NO3)2) и йодид калия (KI), признаки реакции можно наблюдать через несколько часов, а если слить растворы этих солей, признаки реакции появятся сразу. Напишите уравнение реакции.
С2(5 баллов). Запишите схему химической реакции, скорость которой можно рассчитать по формуле
С3(6баллов). Вычислите, какое количество теплоты выделилось, если сгорело 25 кг угля? Термохимическое уравнение реакции: С + О2 = СО2 + 402,24 кДж