Площадь треугольника онлайн расчет. Площадь треугольника онлайн расчет Нахождение длины медианы

Свойства

  • Медианы треугольника пересекаются в одной точке , которая называется центроидом , и делятся этой точкой на две части в отношении 2:1, считая от вершины.
  • Треугольник делится тремя медианами на шесть равновеликих треугольников.
  • Большей стороне треугольника соответствует меньшая медиана.
  • Из векторов, образующих медианы, можно составить треугольник.
  • При аффинных преобразованиях медиана переходит в медиану.
  • Медиана треугольника делит его на две равновеликие части.

Формулы

  • Формула медианы через стороны (выводится через теорему Стюарта или достроением до параллелограмма и использованием равенства в параллелограмме суммы квадратов сторон и суммы квадратов диагоналей):
, где m c - медиана к стороне c; a, b, c - стороны треугольника, поэтому сумма квадратов медиан произвольного треугольника всегда в 4/3 раза меньше суммы квадратов его сторон.
  • Формула стороны через медианы:
, где медианы к соответствующим сторонам треугольника, - стороны треугольника.

Если две медианы перпендикулярны, то сумма квадратов сторон, на которые они опущены, в 5 раз больше квадрата третьей стороны.

Мнемоническое правило

Медиана-обезьяна,
у которой зоркий глаз,
прыгнет точно в середину
стороны против вершины,
где находится сейчас.

Примечания

См. также

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Медиана треугольника" в других словарях:

    Медиана: Медиана треугольника в планиметрии, отрезок соединяющий вершину треугольника с серединой противоположной стороны в статистике медианой называется значение совокупности, делящее ранжированный ряд данных пополам Медиана (статистика) … … Википедия

    Медиана: Медиана треугольника в планиметрии, отрезок, соединяющий вершину треугольника с серединой противоположной стороны Медиана (статистика) квантиль 0.5 Медиана (трасса) средняя линия трассы, проведённая между правым и левым … Википедия

    Треугольник и его медианы. Медиана треугольника ― отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны, а также прямая, содержащая этот отрезок. Содержание 1 Свойства 2 Формулы … Википедия

    Линия, соединяющая вершину треугольника с серединой его основания. Полный словарь иностранных слов, вошедших в употребление в русском языке. Попов М., 1907. медиана (лат. mediana средняя) 1) геол. отрезок, соединяющий вершину треугольника с… … Словарь иностранных слов русского языка

    Медиана (от латинского mediana средняя) в геометрии, отрезок, соединяющий одну из вершин треугольника с серединой противоположной стороны. Три М. треугольника пересекаются в одной точке, которую иногда называют «центром тяжести» треугольника, так … Большая советская энциклопедия

    Треугольника прямая (или ее отрезок внутри треугольника), соединяющая вершину треугольника с серединой противоположной стороны. Три М. треугольника пересекаются в одной точке, к рая называется центром тяжести треугольника, центроидом, или… … Математическая энциклопедия

    - (от лат. mediana средняя) отрезок, соединяющий вершину треугольника с серединой противоположной стороны … Большой Энциклопедический словарь

    МЕДИАНА, медианы, жен. (лат. mediana, букв. средняя). 1. Прямая линия, проведенная от вершины треугольника к середине противолежащей стороны (мат.). 2. В статистике для ряда многих данных величина, обладающая тем свойством, что число данных,… … Толковый словарь Ушакова

    МЕДИАНА, ы, жен. В математике: отрезок прямой линии, соединяющий вершину треугольника с серединой противоположной стороны. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    МЕДИАНА (от лат. mediana средняя), отрезок, соединяющий вершину треугольника с серединой противоположной стороны … Энциклопедический словарь

Содержащую этот отрезок. Точка пересечения медианы со стороной треугольника называется основанием медианы .

  • Можно также ввести понятие внешней медианы треугольника.

Энциклопедичный YouTube

    1 / 3

    ✪ МЕДИАНЫ биссектрисы и ВЫСОТЫ треугольника - 7 класс

    ✪ Медиана треугольника. Построение. Свойства.

    ✪ биссектриса, медиана, высота треугольника. Геометрия 7 класс

    Субтитры

Свойства

Основное свойство

Все три медианы треугольника пересекаются в одной точке , которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.

Свойства медиан равнобедренного треугольника

  • В равнобедренном треугольнике две медианы, проведенные к равным сторонам треугольника, равны, а третья медиана одновременно является биссектрисой и высотой .
  • Верно и обратное: если в треугольнике две медианы равны, то треугольник - равнобедренный, а третья медиана одновременно является биссектрисой и высотой угла при своей вершине.
  • У равностороннего треугольника все три медианы равны.

Свойства оснований медиан

  • Теорема Эйлера для окружности девяти точек : основания трёх высот произвольного треугольника, середины трёх его сторон (основания его медиан ) и середины трёх отрезков, соединяющих его вершины с ортоцентром , все лежат на одной окружности (так называемой окружности девяти точек ).
  • Отрезок, проведенный через основания двух любых медиан треугольника, является его средней линией . Средняя линия треугольника всегда параллельна той стороне треугольника, с которой она не имеет общих точек.
    • Следствие (теорема Фалеса о параллельных отрезках). Средняя линия треугольника равна половине длины той стороны треугольника, которой она параллельна.

Другие свойства

  • Если треугольник разносторонний (неравносторонний ), то его биссектриса , проведённая из любой вершины, лежит между медианой и высотой , проведёнными из той же вершины.
  • Медиана разбивает треугольник на два равновеликих (по площади) треугольника.
  • Треугольник делится тремя медианами на шесть равновеликих треугольников.
  • Из отрезков, образующих медианы, можно составить треугольник, площадь которого будет равна 3/4 от всего треугольника. Длины медиан удовлетворяют неравенству треугольника .
  • В прямоугольном треугольнике медиана, проведённая из вершины с прямым углом, равняется половине гипотенузы.
  • Большей стороне треугольника соответствует меньшая медиана.
  • Отрезок прямой, симметричный или изогонально сопряжённый внутренней медиане относительно внутренней биссектрисы, называется симедианой треугольника. Три симедианы проходят через одну точку - точку Лемуана .
  • Медиана угла треугольника изотомически сопряжена самой себе.

Основные соотношения

В частности, сумма квадратов медиан произвольного треугольника составляет 3/4 от суммы квадратов его сторон: m a 2 + m b 2 + m c 2 = 3 4 (a 2 + b 2 + c 2) {\displaystyle m_{a}^{2}+m_{b}^{2}+m_{c}^{2}={\frac {3}{4}}(a^{2}+b^{2}+c^{2})} .

  • Обратно, можно выразить длину произвольной стороны треугольника через медианы:
a = 2 3 2 (m b 2 + m c 2) − m a 2 {\displaystyle a={\frac {2}{3}}{\sqrt {2(m_{b}^{2}+m_{c}^{2})-m_{a}^{2}}}} , где m a , m b , m c {\displaystyle m_{a},m_{b},m_{c}} медианы к соответствующим сторонам треугольника, a , b , c {\displaystyle a,b,c} - стороны треугольника.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Данная страница посвящена достаточно распространенному информационному ресурсу - описанию и расчету площади произвольного треугольника. Отличие от других ресурсов, это расчет площади онлайн, непосредственно в процессе прочтения статьи

Площадь через высоту и основание

Это самая простая для запоминания формула. Словами эта формула звучит так - площадь треугольника равна половине произведения основания треугольника на его высоту.

В случае прямоугольного треугольника это выражение приобретает еще более простой смысл: Площадь прямоугольного треугольника равна половине произведения двух катетов

площадь через стороны треугольника

Площадь треугольника выраженная через стороны известна очень давно - она фигурирует в книгах, датированных 1 веком до нашей эры.

Эту формулу можно выразить по разному, благо формул расчета параметров треугольника достаточно.

Но если попытаться мыслить категориями времен до нашей эры, когда не было формул в современном преставлении, не было переменных и знаков корня, то единственной аксимомой, на базе которого, Герон, создал свою формулу, была теорема Пифагора. А так как в те времена, еще не знали иррациональных чисел, да к отрицательным у ученых было достаточно скептическое видение, то для размышлений использовались целые числа.

Самого доказательства здесь не будет, предположив только что Герон, дополнял произвольный пифагоровый треугольник до прямоугольника высчитывал его площадь, и делил на два.

Площадь через координаты вершин

Когда известны координаты вершин треугольника, формула площади может быть выражена вот такой формулой

Определитель третьего порядка легко раскладывается, и поэтому расчет площади даже в ручном режиме не вызовет никаких затруднений.

Площадь через две стороны и угол между ними

Площадь через сторону и два угла

Редко встречающаяся задача, но и для таких исходных данных высчитали формулу. Внимательный читатаель сразу видит "ошибку". Заголовок гласит, что площадь узнается через сторону и два угла, то есть через три переменных, а в формуле присутствут все четыре. Как же так?

На самом деле ошибки никакой нет, зная одну из основных аксиом треугольника, гласящая, что сумма внутренних углов треугольника всегда(!!) равна 180 градусов

Поэтому нет ничего сложного, зная два угла треугольника, узнать третий.

Площадь через медианы треугольника

Медиана на сторону а
Медиана на сторону b
Медиана на сторону с

Красивая формула не правда ли?

Медиана треугольника - это отрезок, соединяющий верщину треугольника с серединой противолежащей стороны этого треугольника.

Свойства медиан треугольника

1. Медиана разбивает треугольник на два треугольника одинаковой площади.

2. Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника (центроидом).

3. Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.

Длина медианы проведенной к стороне: (док-во достроением до параллелограмма и использованием равенства в параллелограмме удвоенной суммы квадратов сторон и суммы квадратов диагоналей )

Т1. Три медианы треугольника пересекаются в одной точке М, которая делит каждую из них в отношении 2:1, считая от вершин треугольника. Дано: ∆ABC, СС 1 , АА 1 , ВВ 1 - медианы
ABC . Доказать: и

Д-во: Пусть М - точка пересечения медиан СС 1 , АА 1 треугольника ABC. Отметим A 2 - середину отрезка AM и С 2 - середину отрезка СМ. Тогда A 2 C 2 - средняя линия треугольника АМС. Значит,А 2 С 2 || АС

и A 2 C 2 = 0,5*АС. С 1 А 1 - средняя линия треугольника ABC. Значит, А 1 С 1 || АС и А 1 С 1 = 0,5*АС.

Четырехугольник А 2 С 1 А 1 С 2 - параллелограмм, так как его противо­положные стороны А 1 С 1 и А 2 С 2 равны и параллельны. Следовательно, А 2 М = МА 1 и С 2 М = МC 1 . Это означает, что точки А 2 и M делят медиану АА 2 на три равные части, т. е. AM = 2МА 2 . Аналогично СМ = 2MC 1 . Итак, точка М пересечения двух медиан АА 2 и CC 2 треугольника ABC делит каждую из них в отношении 2:1, считая от вершин треу­гольника. Совершенно аналогично доказывается, что точка пересечения меди­ан АА 1 и BB 1 делит каждую из них в отношении 2:1, считая от вер­шин треугольника.

На медиане АА 1 такой точкой является точка М, следовательно, точка М и есть точка пересечения медиан АА 1 иBB 1.

Таким образом, n

T2. Докажите, что отрезки, которые соединяют центроид с вер­шинами треугольника, делят его на три равновеликие части. Дано: ∆ABC , - его медианы.

Доказать:S AMB =S BMC =S AMC . Доказательство. В, у них общая. т.к. равны их основания и высота, проведенная из вершины М, у них общая. Тогда

Аналогичным образом доказывается, чтоS AMB = S AMC . Таким образом,S AMB = S AMC = S CMB . n

Биссектриса треугольника.Теоремы связанные с биссектрисами треугольника. Формулы для нахождения биссектрис

Биссектриса угла - луч с началом в вершине угла, делящий угол на два равных угла.

Биссектриса угла есть геометрическое место точек внутри угла, равноудалённых от сторон угла.

Свойства

1. Теорема о биссектрисе: Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон

2. Биссектрисы внутренних углов треугольника пересекаются в одной точке - инцентре - центре вписанной в этот треугольник окружности.

3. Если в треугольнике две биссектрисы равны, то треугольник - равнобедренный (теорема Штейнера - Лемуса).

Вычисление длины биссектрисы

l c - длина биссектрисы, проведённой к стороне c,

a,b,c - стороны треугольника против вершин A,B,C соответственно,

p - полупериметр треугольника,

a l ,b l - длины отрезков, на которые биссектриса l c делит сторону c,

α,β,γ - внутренние углы треугольника при вершинах A,B,C соответственно,

h c - высота треугольника, опущенная на сторону c.


Метод площадей.

Характеристика метода. Из названия следует, что главным объектом данного метода является площадь. Для ряда фигур, например для треугольника, площадь довольно просто выражается через разнообразные комбинации элементов фигуры (треугольника). Поэтому весьма эффективным оказывается прием, когда сравниваются различные выражения для площади данной фигуры. В этом случае возникает уравнение, содержащее известные и искомые элементы фигуры, разрешая которое мы определяем неизвестное. Здесь и проявляется основная особенность метода площадей – из геометрической задачи он «делает» алгебраическую, сводя все к решению уравнения (а иногда системы уравнений).

1) Метод сравнения: связан с большим кол-вом формул S одних и тех же фигур

2) Метод отношения S: основан на след опорных задачах:



Теорема Чевы

Пусть точки A",B",C" лежат на прямых BC,CA,AB треугольника. Прямые AA",BB",CC" пересекаются в одной точке тогда и только тогда, когда

Доказательство.

Обозначим через точку пересечения отрезков и . Опустим из точек С и А перпендикуляры на прямую ВВ 1 до пересечения с ней в точках Kи L соответственно (см. рисунок).

Поскольку треугольники и имеют общую сторону , то их площади относятся как высоты, проведенные на эту сторону, т.е. AL иCK:

Последнее равенство справедливо, так как прямоугольные треугольники и подобны по острому углу.

Аналогично получаем и

Перемножим эти три равенства:

что и требовалось доказать.

Замечание. Отрезок (или продолжение отрезка), соединяющий вершину треугольника с точкой, лежащей на противоположной стороне или ее продолжении, называется чевианой.

Теорема (обратная теорема Чевы) . Пусть точки A",B",C" лежат на сторонах BC,CA и AB треугольника ABC соответственно. Пусть выполняется соотношение

Тогда отрезки AA",BB",CC" и пересекаются в одной точке.

Теорема Менелая

Теорема Менелая. Пусть прямая пересекает треугольник ABC, причем C 1 – точка ее пересечения со стороной AB, A 1 – точка ее пересечения со стороной BC, и B 1 – точка ее пересечения с продолжением стороны AC. Тогда

Доказательство . Проведем через точку C прямую, параллельную AB. Обозначим через K ее точку пересечения с прямой B 1 C 1 .

ТреугольникиAC 1 B 1 иCKB 1 подобны (∟C 1 AB 1 = ∟KCB 1 , ∟AC 1 B 1 = ∟CKB 1). Следовательно,

ТреугольникиBC 1 A 1 иCKA 1 такжеподобны (∟BA 1 C 1 =∟KA 1 C, ∟BC 1 A 1 =∟CKA 1). Значит,

Из каждого равенства выразим CK:

Откуда что и требовалось доказать.

Теорема (обратная теорема Менелая). Пусть дан треугольник ABC. Пусть точка C 1 лежит на стороне AB, точка A 1 – на стороне BC, а точка B 1 – на продолжении стороны AC, причем выполняется соотношение

Тогда точки A 1 ,B 1 и C 1 лежат на одной прямой.