Определение общего центра тяжести тела человека: Методические рекомендации к изучению курса биомеханики для студентов факультета физвоспитания. Биомеханическое определение общего центра тяжести человека Общий центр масс человека зависит от

Центр тяжести - это точка, к которой может быть приложена равнодействующая сил тяжести всех частей тела, т. е. место, где как бы сосредоточен весь вес тела. По отношению к этой точке части тела автоматически располагаются так, чтобы тело сохраняло равновесие. Для художника нахождение центра тяжести приобретает наибольшее значение в стоячей позе, в особенности если модель стоит на одной ноге. На стоящей спокойно фигуре центр тяжести находится в области крестца несколько выше середины роста, но при наклонах он перемещается в направлении наклона (рис. 69).

Площадь опоры для стоящего человека-это площадь, которая лежит между подошвами его ног с прибавлением тех участков площади, на которую они опираются. Равновесие тем устойчивее, чем шире площадь опоры, поэтому если хотят стоять устойчиво, широко расставляют ноги. Чем уже площадь опоры, тем менее устойчиво равновесие, например, у человека, стоящего на одной ноге, вся площадь опоры - это площадь, занимаемая подошвой этой ноги. У сидящей фигуры площадь опоры больше, а у лежащей - еще больше. Тело будет в равновесии, если вертикаль, опущенная из центра тяжести, падает на площадь опоры. Чем ближе к краю опорной площади падает эта вертикаль, тем менее устойчиво равновесие (поэтому у стоящего на одной ноге равновесие мало устойчиво, так как вертикаль эта падает близко к границе опорной площади и при колебаниях легко может выйти за ее границу).

При наклонах фигуры вертикаль приближается к краю опорной площади, а при сильных наклонах выходит за ее черту, поэтому при сильных наклонах надо перемещать центр тяжести обратно, а для этого переносить часть туловища в противоположную сторону. Например, при наклонах вперед таз переносится назад (попробуйте наклониться вперед, став вплотную пятками к стене; это не удастся: туловище будет падать, так как таз нельзя перенести кзади). Если нести в одной руке тяжесть, например ведро с водой, то туловище надо отклонить в противоположную сторону, а если воды много, даже вытянуть свободную руку. Нельзя встать со стула, не наклонив туловище вперед. Таких примеров при явной потере равновесия множество. Но тело стремится к наиболее устойчивому спокойному положению даже тогда, когда равновесие явно не теряется. Человек инстинктивно стремится принять та-

Рис. 69. Различное положение тела человека:

/ - неустойчивое положение (слева), устойчивое положение (справа); II - незначительное перенесение тяжести вперед, способствующее поступательному движению при ходьбе; III - значительное перемещение тяжести тела вперед - способствующее быстрому бегу; IV - равномерное распределение тяжести тела при подъеме и опускании на корточки; V - перенесение тяжести тела и груза вперед для подъема на лестницу; VI - если ступни нельзя поместить

под сиденьем, необходимо при подъеме переместить часть тяжести тела вперед; VII - при перемещении ступней под сиденье можно подниматься плавно; VIII - стоя вплотную к стене, нагнуться нельзя - можно упасть; /X - необходимо отступить от стены, чтобы перенести часть тела назад, выгнув таз; X - использование потери равновесия при нанесении удара

- в боксе, б - при рубке дров)

кую позу, т. е. взаимно расположить части своей фигуры в пространстве по отношению к площади опоры так, чтобы поза была более устойчива (чтобы меньше всего была подвержена потере равновесия при наименьшей затрате мышечной силы).

Это стремление к устойчивости и покою легче всего увидеть, если поставить натурщика в свободную позу, опирающимся на одну ногу и с другой отставленной ногой, не поправлять его и дать самому принять удобное положение. В этой позе таз будет отнесен в сторону опорной ноги и наклонен в сторону отставленной, грудная клетка тоже отнесена в сторону опорной ноги. Остальные части фигуры: шея, голова, плечевой пояс, руки - тоже займут положение, наиболее благоприятствующее полному сохранению равновесия, т. е. наиболее удобное. Если проверить это на себе, став самому в ту же позу (желательно перед зеркалом) и, приняв наиболее покойное удобное положение, затем нарочно переместить какую-нибудь часть тела - переменить наклон головы, переместить руку, приподнять плечо, то можно заметить или небольшое колебание всей фигуры, или незначительное перемещение ее частей - руки, лопатки, головы, шеи; тело автоматически компенсирует даже малую потерю устойчивости, которую вызвало нарочитое движение.

Взаимодействие частей тела для сохранения гармонического равновесия и является основой пластичности фигуры.

Нарушения равновесия и связанные с этим наклон, падения или бросок тела автоматически используются человеком при движениях. Если человек поднимается со стула, он нарушает равновесие наклоном туловища вперед, и это помогает ему подняться. Наклон вперед при подъеме на лестницу или в гору помогает подъему. При беге и прыжках наклон и падение туловища вперед усиливают движение. При рубке дров, метании копья умелый рывок туловища дает больший эффект, чем мышечная работа рук. Если в рукопашном бою (боксе) боец с размахом всего туловища, т. е., использовав потерю равновесия, нанесет удар противнику, он должен для восстановления равновесия попасть в него, т. е. встретить сопротивление. Если же он не попал в противника, то упадет, или для сохранения равновесия должен быстро переступить ногами в направлении удара.

Конечно, художник не может точно определять местоположение и перемещение центра тяжести. Надо лишь иметь ясное представление об этом и, наблюдая и работая над натурой, вырабатывать в себе ощущение соразмерности и пластичности фигуры.

Описывать положение тела человека можно разными способами.

Место тела характеризует, в какой части пространства (где именно - например, в какой части стадиона, комнаты) находится в данный момент человек. Чтобы определить место тела, достаточно указать три координаты какой-либо точки тела в неподвижной системе координат. В качестве такой точки обычно удобно выбирать общий центр масс тела (ОЦМ), связывая с ним начало другой, подвижной системы координат, оси которой ориентированы так же, как и оси неподвижной системы.

Ориентация тела характеризует его поворот относительно неподвижной системы координат (вверх головой, вниз головой, горизонтально и т. п.). Поза тела характеризует взаимное расположение звеньев тела относительно друг друга. Определение места тела обычно не связано с большими трудностями. Определение ориентации тела - задача гораздо более трудная, особенно при сложных позах. Объясняется это тем, что с точки зрения механики тело человека является телом переменной конфигурации (В. Т. Назаров, 1974). Для таких тел понятие об их ориентации в пространстве не является строгим.

Основные плоскости тела ориентируются в системе трех взаимно перпендикулярных осей: вертикальной и двух горизонтальных - поперечной и глубинной, или передне-задней. Вертикальная плоскость, проходящая через переднюю срединную и позвоночную линии, а также всякая плоскость, параллельная ей, называются сагиттальными. Они разделяют тело на правую и левую части. Вертикальная плоскость, проходящая перпендикулярно к сагиттальной, а также всякая плоскость, параллельная ей, называются фронтальными. Они разделяют тело на переднюю и заднюю части.

Горизонтальные плоскости проходят перпендикулярно по отношению к этим двум плоскостям и называются трансверсальными (поперечными). Они разделяют тело на верхнюю и нижнюю части. К сожалению, основные анатомические плоскости и оси мало пригодны для описания многих движений человека. Проблема здесь состоит в том, что с телом человека надо каким-то образом связать систему координат так, чтобы изменение ориентации этой системы отражало изменение ориентации тела.

М. С. Лукин (1964) предложил с этой целью определять продольную ось тела следующим образом. Тело человека (в стойке руки вверх) делится горизонтальной плоскостью на две равные по весу половины. Линия, соединяющая центры масс верхней и нижней половины тела (и проходящая через ОЦМ), образует продольную ось тела (OY). Другие две оси (ОХ и OZ) должны быть перпендикулярны ей и начинаться в ОЦМ. Передне-заднюю ось направляют параллельно плоскости симметрии таза, а поперечную-- перпендикулярно ей.

В качестве начала систем координат, связанных с телом, не всегда удобно брать центр масс тела: его положение довольно трудно определить, при изменении позы ОЦМ смещается и может даже выйти за пределы тела. Поэтому в качестве фиксированных антропометрических ориентиров, с которыми удобно связывать начало системы координат, разными авторами предлагались:

а) выход крестцового канала (между крестцовыми рогами), который легко пальпируется. Так как крестец является жестким образованием, система координат, начинающаяся в этой точке, хорошо ориентируется: вертикальная ось OY направлена вверх по крестцу, фронтальная ОХ - влево, сагиттальная ось OZ - вперед (Panjabietal., 1974);

б) вершина остистого отростка пятого поясничного позвонка (А. Н. Лапутин, 1976)--точка, весьма близко расположенная к центру масс тела человека, стоящего в обычной стойке .

Для определения ориентации тела с ним надо связать две системы координат, имеющих начало в одной точке. Оси одной из них остаются параллельными неподвижной системе координат (по отношению к которой определяется место тела); оси второй - связаны с телом. Ориентацию тела в этом случае характеризуют три Эйлеровых угла, с помощью которой можно перейти от одной системы координат к другой.

Рис 1.

Инерционные характеристики раскрывают, каковы особенности тела человека и движимых им тел в их взаимодействиях. От инерционных характеристик зависит сохранение и изменение скорости. Это масса, момент инерции, обычно непосредственно не регистрируются. Определяются данные, по которым рассчитывают эти характеристики.

Масса тела (т) определяется взвешиванием. Зная по весу тела его силу тяжести (G) и ускорение свободного падения тела (g), G определяют массу: т =G/g .

Распределение масс в теле в известной мере характеризуется положением его общего центра тяжести (ОЦТ). Применяют опытное (экспериментальное) определение положения ОЦТ и расчетное.

Один из наиболее точных опытных методов - взвешивание человека на треугольной платформе (рис.2) в заданной позе.

Рис. 2.

Необходимую позу устанавливают двумя способами. При первом способе позу срисовывают с кинокадра, увеличивая ее до натурального размера. На этот рисунок, находящийся на платформе, ложится испытуемый, принимая позу, соответствующую нанесенному контуру. При втором способе на кинокадре измеряют углы в крупных суставах тела (плечевые, локтевые, тазобедренные, коленные, голеностопные) и, используя угломеры, придают испытуемому на платформе требуемую позу.

Опытное определение выполняют и на моделях. Модель Абалакова - фигурка человека, построенная с соблюдением средних про порций тела (в 0,1 размера тела и 0,001 веса) Фигурка укладывается в заданной позе на лист бумаги с контурами позы (рис. 3, а) Лист с моделью передвигают по свободно качающейся на опоре О платформе, пока ОЦТ модели не совпадет с точкой подвеса платформы Нажимом снизу на иглу в центре платформы прокалывают лист бумаги в точке расположения ОЦТ.

Можно также применить шарнирную модель О. Фишера, которая позволяет определить положение ОЦТ в передне-задней плоскости (рис 3, б)

Масса - это мера инертности тела при поступательном движении. Она измеряется отношением приложенной силы к вызываемому ею ускорению: m=F/a ; [m]= M

Измерение массы здесь основано на втором законе Ньютона: Изменение движения пропорционально извне действующей силе и происходит по тому направлению, по которому эта сила приложена.

Масса тела характеризует, как именно приложенная сила может изменить движение тела. Одна и та же сила вызовет большее ускорение у тела с меньшей массой, чем у тела с большей массой.

Масса тела человека во время движения не изменяется. Так как она служит мерой инерции, то не следует говорить: «набрать инерцию», «погасить инерцию». Увеличивают и уменьшают не массу (как меру инерции), а кинетическую энергию (зависящую от скорости тела).

Для анализа движений часто приходится учитывать не только величину массы, но и ее распределение в теле. В известной степени это указывает на местоположение центра масс тела. Эта точка совпадает с центром тяжести тогоже тела (центр масс совпадает с центром инерции как точкой приложения параллельных сил инерции всех точек тела).

Рис. 3. Определение положения ОЦТ тела человека: а - по модели В. М. Абалакова, б - по модели О. Фишера

Момент инерции - это мера инертности тела при вращательном движении. Момент инерции тела равен отношению момента силы относительно данной оси к вызываемому им угловому ускорению:

I=Mz(F)/е=?mr2; [I]= ML2

Момент инерции тела относительно данной оси численно равен сумме произведений масс всех его частиц и квадратов расстояний каждой частицы до этой оси.

Отсюда видно, что момент инерции тела больше, когда его частицы дальше от оси вращения. В таком случае тот же момент силы Mz (F) вызовет меньшее угловое ускорение (е). Инерционное сопротивление быстро увеличивается с отдалением частей тела от оси вращения .

Обратим внимание на то, что основное уравнение динамики в принципе одинаково для поступательного и вращательного движения. В левой его части причина изменения движения - сила (F) или момент силы Мг (F); в правой части сначала мера инертности-- масса (т) или момент инерции (I), и далее мера изменения скорости--ускорение линейное (а) или угловое (е).

Поступательное движение Вращательное движение

Заметим также, что действие силы во вращательном движении зависит от того, как далеко проходит линия ее действия от оси вращения (r). Инертное сопротивление в этом случае зависит также от того, как частицы тела (их массы) распределены относительно оси вращения (R).

Величина R называется радиусом инерции. Она показывает, насколько удалены массы от оси вращения. Если расположить все частицы тела на одинаковом расстоянии от оси, получится полый цилиндр. Радиус такого цилиндра, момент инерции которого равен моменту инерции изучаемого тела, и есть радиус инерции (R). Он позволяет сравнивать различные распределения массы тела относительно разных осей вращения .

Понятие о моменте инерции очень важно для понимания движений, хотя точное количественное определение этой величины в конкретных случаях пока затруднено.

Тело человека - это система подвижно соединенных звеньев. На каждое звено тела человека действует сила тяжести звена, направленная вертикально вниз. Если силы тяжести звеньев обозначить соответственно G1, G2, ... Gn, то равнодействующая этих параллельных сил Gтела и модуль (величина) этой силы, равна:

Gтела = G1 + G2 + ... + Gn = .

При любом повороте тела силы остаются приложенными в одних и тех же точках звеньев и сохраняют свое вертикальное направление, оставаясь параллельными друг другу. Следовательно, и равнодействующая сил тяжести звеньев тела будет при любых положениях тела проходить через одну и ту же точку тела, неминуемо с ним связанную, являющуюся центром параллельных сил тяжести звеньев.

Точка, через которую проходит линия действия равнодействующей элементарных сил тяжести при любом повороте тела в пространстве, являясь центром параллельных сил тяжести, называется общим центром тяжести (ОЦТ) твердого тела.

Так как тело человека не является неизменным твердым телом, а представляет собой систему подвижных звеньев, то положение ОЦТ будет определяться главным образом позой тела человека (т.е. взаимным относительным положением звеньев тела) и изменяться с изменением позы.

Знание положения ОЦТ человека важно для биомеханического анализа и для решения многих самостоятельных задач механики спортивных движений. Часто по движению ОЦТ мы судим о движении человека в целом, как бы оцениваем результат движения. По характеристикам движения ОЦТ (траектории, скорости, ускорению) можно судить о технике выполнения движения.

Степень напряжения тех или иных мышечных групп в статическом положении зависит от распределения массы тела (от конструкционных особенностей), и этим определяются двигательные возможности человека.

Говоря об ОЦТ тела человека, следует иметь в виду не геометрическую точку, а некоторую область пространства, в которой эта точка перемещается. Это перемещение обусловлено процессами дыхания, кровообращения, пищеварения, мышечного тонуса и т.д., т.е. процессами, приводящими к постоянному смещению ОЦТ тела человека. Ориентировочно можно считать, что диаметр сферы, внутри которой происходит перемещение ОЦТ, в спокойном состоянии, составляет 10-20 мм. В процессе движения смещение ОЦТ может значительно увеличиваться и этим оказывать влияние на технику выполнения упражнений.

На каждое звено и на все тело человека постоянно действуют силы тяжести, вызванные притяжением и вращением Земли.

Когда тело покоится на опоре (или подвешено), сила тяжести, приложенная к телу, прижимает его к опоре (или отрывает от подвеса). Это действие тела на опору (верхнюю или нижнюю) измеряется весом тела.

Вес тела (статический) - это мера его воздействия в покое на покоящуюся же опору (подвес), препятствующую его падению. Он равен произведению массы тела m на ускорение свободного падения g.

P = mg ; [P] - H (ньютон)

Значит, сила тяжести и вес тела - не одна и та же сила. Вес тела человека приложен к опоре, а сила тяжести приложена к телу человека (центру тяжести).

Опытным путем (О. Фишер, Н.А. Бернштейн) были определены средние данные о весе звеньев тела и положении их центров тяжести. Если принять вес тела за 100%, то вес каждого звена может быть выражен в относительных единицах (%). При выполнении расчетов не обязательно знать ни вес всего тела, ни каждого его звена в абсолютных единицах.

Центры тяжести звеньев определены или по анатомическим ориентирам (голова, кисть), или по относительному расстоянию ЦТ от проксимального сустава (радиус центра тяжести - часть всей длины конечностей), или по пропорции (туловище, стопа).

Центр тяжести звена определяют по расстоянию от него до оси проксимального сустава - по радиусу центра тяжести. Его выражают относительно длины всего звена, принятой за единицу, считая от проксимального сочленения. Для бедра он составляет приближенно 0,44; для голени - 0,42; для плеча - 0,47; для предплечья - 0,42; для туловища - 0,44 (отмеряют расстояние от поперечной оси плечевых суставов до оси тазобедренных суставов). Центр тяжести головы расположен в области турецкого седла клиновидной кости (проекция спереди на поверхность головы - между бровями, сбоку - на 3-3,5 см выше наружного слухового прохода). Центр тяжести кисти расположен в области головки третьей пястной кости, центр тяжести стопы - на прямой, соединяющей пяточный бугор пяточной кости с концом второго пальца, на расстоянии 0,44 от первой точки (рис. 4, а).

Зная вес звеньев и радиусы центров их тяжести, можно приближенно определить положение ОЦТ всего тела .

Общий центр тяжести всего тела - это воображаемая точка, к которой приложена равнодействующая сил тяжести всех звеньев тела. При основной стойке он расположен в области малого таза, впереди крестца (по М.Ф. Иваницкому). Положение ОЦТ тела надо знать при определении равновесия человека на опоре (или в подвесе), в водной среде, в покое, а также под воздействием потока воздуха или воды. Для определения условий равновесия тела при покое или движении в среде важно узнать положение двух точек: центра объема и центра поверхности тела.

Центр объема (ЦО) тела человека-- это точка приложения выталкивающей силы при полном погружении тела в воду. Он совпадает с центром тяжести вытесненной воды в форме погруженного тела. Так как плотность тела человека неодинакова, ЦО обычно на несколько сантиметров ближе к голове (при выпрямленном положении тела), чем ОЦТ. Значит, погруженное в воду тело человека в выпрямленном положении будет поворачиваться вокруг поперечной оси ногами вниз.

Центр поверхности (ЦП) тела человека - это при данной позе тела и его ориентации относительно потока (воды или воздуха) точка приложения равнодействующей напора среды. Сила действия среды, будучи расположена по ту или иную сторону от ОЦТ человека, обусловливает соответствующий поворот тела.

Момент инерции звена тела дает представление о величине массы звена и ее распределении относительно заданной оси. Эта общая характеристика не отражает, насколько она зависит от величины масс и насколько от распределения материальных частиц относительно заданной оси. Момент инерции служит лишь мерой инертности. Относительно разных осей момент инерции звена различен. Обычно нужно знать момент инерции звена относительно поперечной оси проксимального сустава. Момент инерции для неоднородных тел, не имеющих правильной геометрической формы, определяют только опытным путем. Приближенно моменты инерции длинных звеньев конечностей равны 0,3 ml2 (где т - масса звена и l - длина звена). Радиусы инерции относительно поперечной оси проксимального сустава приближенно равны для плеча 0,55, для предплечья - 0,50, для бедра - 0,53 и для голени - 0,50 всей длины звена. Радиусы инерции существенно больше радиусов центров тяжести, поэтому при расчетах нельзя считать их равными.

Момент инерции тела человека относительно заданной оси определяется как сумма моментов инерции всех звеньев тела относительно той же оси. Наименьший момент инерции выпрямленного тела человека - момент инерции относительно продольной оси тела, проходящей через его ОЦТ (рис. 4, б). Направленное изменение момента инерции широко используется при управлении вращательными движениями тела.

Рис. 4. Геометрия масс тела человека: а - центры тяжести и относительные веса звеньев (по О. Фишеру и Н. А. Бернштейну); б - моменты инерции тела относительно разных осей

Любое тело можно рассматривать как совокупность материальных точек, в качестве которых можно, например, брать молекулы. Пусть тело состоит из n материальных точек с массами m1, m2, ...mn.

Центром масс тела , состоящего из n материальных точек, называется точка (в геометрическом смысле), радиус-вектор которой определяется формулой :

Здесь R1 – радиус-вектор точки с номером i (i = 1, 2, ... n).

Это определение выглядит непривычно, но на самом деле оно даёт положение того самого центра масс, о котором у нас имеется интуитивное представление. Например, центр масс стержня будет находиться в его середине. Сумма масс всех точек, входящая в знаменатель вышеопределённой формулы, называется массой тела. Массой тела называется сумма масс всех его точек : m = m1 + m2 + ... + mn .

В симметричных однородных телах ЦМ всегда расположен в центре симметрии или лежит на оси симметрии, если у фигуры центра симметрии нет. Центр масс может находиться как внутри тела (диск, квадрат, треугольник), так и вне его (кольцо, рамка, угольник).

Для человека положение ЦМ зависит от принятой позы. Во многих видах спорта важным слагаемым успеха является способность сохранять равновесие. Так, в спортивной гимнастике, акробатике

большое количество элементов включат в себя разные виды равновесия. Важна способность сохранять равновесие в фигурном катании, в беге на коньках, где опора имеет очень малую площадь.

Условиями равновесия покоящегося тела являются одновременное равенство нулю суммы сил и суммы моментов сил , действующих на тело.

Выясним, какое положение должна занимать ось вращения, чтобы закреплённое на ней тело оставалось в равновесии под действием сил тяжести. Для этого разобьём тело на множество маленьких кусочков и нарисуем действующие на них силы тяжести.

В соответствии с правилом моментов для равновесия необходимо, чтобы сумма моментов всех этих сил относительно оси равнялась нулю.

Можно показать, что для каждого тела существует единственная точка, где сумма моментов сил тяжести относительно любой оси, проходящей через эту точку, равна нулю. Эта точка называется центром тяжести (обычно совпадает с центром масс).

Центром тяжести тела (ЦТ) называется точка, относительно которой сумма моментов сил тяжести, действующей на все частицы тела, равна нулю .

Таким образом, силы тяжести не вызывают вращения тела вокруг центра тяжести. Поэтому все силы тяжести можно было бы заменить единственной силой, которая приложена к этой точке и равна силе тяжести.

Для изучения движений тела спортсмена часто вводится термин общий центр тяжести (ОЦТ). Основные свойства центра тяжести:

Если тело закреплено на оси, проходящей через центр тяжести, то сила тяжести не будет вызывать его вращения;

Центр тяжести является точкой приложения силы тяжести;

В однородном поле центр тяжести совпадает с центром масс.

Равновесным называется такое положение тела, при котором оно может оставаться в покое сколь угодно долго. При отклонении тела от положения равновесия, силы, действующие на него, изменяются, и равновесие сил нарушается.

Существуют различные виды равновесия (рис. 9). Принято различать три вида равновесия: устойчивое, неустойчивое и безразличное.

Устойчивое равновесие (рис. 9, а) характеризуется тем, что тело возвращается в первоначальное положение при его отклонении. В таком случае возникают силы, или моменты сил, стремящаяся возвратить тело в исходное положение. Примером может служить положение тела с верхней опорой (например, вис на перекладине), когда при любых отклонениях тело стремится возвратиться в начальное положение.

Безразличное равновесие (рис. 9, б) характеризуется тем, что при изменении положения тела не возникает сил или моментов сил, стремящихся возвратить тело в начальное положение или ещё более удалить тело от него. Это редко наблюдаемый у человека случай. Примером может служить состояние невесомости на космическом корабле.

Неустойчивое равновесие (рис. 9, в) наблюдается тогда, когда при малых отклонениях тела возникают силы или моменты сил, стремящихся ещё больше отклонить тело от начального положения. Такой случай можно наблюдать, когда человек, стоя на опоре очень малой площади (значительно меньшей площади его двух ног или даже одной ноги), отклоняется в сторону.

Рисунок 9. Равновесие тела : устойчивое (а), безразличное (б), неустойчивое (в)

Наряду с перечисленными видами равновесия тел в биомеханике рассматривают ещё один вид равновесия – ограниченно-устойчивое. Этот вид равновесия отличается тем, что тело может вернуться в начальное положение при отклонении от него до некоторого предела, например, определяемого границей площади опоры. Если же отклонение переходит этот предел, равновесие становится неустойчивым.

Основная задача при обеспечении равновесия тела человека состоит в том, чтобы проекция ОЦМ тела находилась в пределах площади опоры. В зависимости от вида деятельности (сохранение статического положения, ходьба, бег и т. п.) и требований к устойчивости частота и быстрота корригирующих воздействий изменяются, но процессы сохранения равновесия одинаковы.

Распределение массы в теле человека

Масса тела и массы отдельных сегментов очень важны для различных аспектов биомеханики. Во многих видах спорта необходимо знать распределение массы для выработки правильной техники выполнения упражнений. Для анализа движений тела человека используется метод сегментирования: оно условно рассекается на определённые сегменты. Для каждого сегмента определяются его масса и положение центра масс. В табл. 1 определены массы частей тела в относительных единицах.

Таблица 1. Массы частей тела в относительных единицах

Часто вместо понятия центра масс используют другое понятие – центр тяжести. В однородном поле тяжести центр тяжести всегда совпадает с центром масс. Положение центра тяжести звена указывают как его расстояние от оси проксимального сустава и выражают относительно длины звена, принятой за единицу.

В табл. 2 приведены анатомическое положение центров тяжести различных звеньев тела.

Таблица 2. Центры тяжести частей тела

Часть тела Положение центра тяжести
Бедро 0,44 длины звена
Голень 0,42 длины звена
Плечо 0,47 длины звена
Предплечье 0,42 длины звена
Туловище
Голова
Кисть
Стопа
Плечо 0,47 длины звена
Предплечье 0,42 длины звена
Туловище 0,44 расстояния от поперечной оси плечевых суставов до оси тазобедренных
Голова Расположена в области турецкого седла клиновидной кости (проекция спереди между бровями, сбоку – на 3,0 – 3,5 выше наружного слухового прохода)
Кисть В области головки третьей пястной кости
Стопа На прямой, соединяющей пяточный бугор пяточной кости с концом второго пальца на расстоянии 0,44 от первой точки
Общий центр масс тяжести при вертикальном положении тела Расположен при основной стойке в области малого таза, впереди крестца

По положению ОЦТ тела спортсмена мы оцениваем его статические положения (стар- товые, промежуточные, конеч- ные), так как положение ОЦТ характеризует степень устойчи- вости равновесия. Рис. 5. Силы тяжести звеньев тела человека Степень напряжения тех или иных мышечных групп в статическом по- ложении зависит от распределения массы тела (от конструкционных осо- бенностей), и этим определяются двигательные возможности человека. Говоря об ОЦТ тела человека, следует иметь в виду не геометрическую точку, а некоторую область пространства, в которой эта точка перемещает- ся. Это перемещение обусловлено процессами дыхания, кровообращения, пищеварения, мышечного тонуса и т.д., т.е. процессами, приводящими к постоянному смещению ОЦТ тела человека. Ориентировочно можно счи- тать, что диаметр сферы, внутри которой происходит перемещение ОЦТ, в спокойном состоянии, составляет 10-20 мм. В процессе движения смеще- ние ОЦТ может значительно увеличиваться и этим оказывать влияние на технику выполнения упражнений. На каждое звено и на все тело человека постоянно действуют силы тя- жести, вызванные притяжением и вращением Земли. Когда тело покоится на опоре (или подвешено), сила тяжести, прило- женная к телу, прижимает его к опоре (или отрывает от подвеса). Это дей- ствие тела на опору (верхнюю или нижнюю) измеряется весом тела. Вес тела (статический) - это мера его воздействия в покое на покоя- щуюся же опору (подвес), препятствующую его падению. Он равен произ- ведению массы тела m на ускорение свободного падения g. P = m⋅g ; [P] - H (ньютон) (10) Значит, сила тяжести и вес тела - не одна и та же сила. Вес тела челове- ка приложен к опоре, а сила тяжести приложена к телу человека (центру тяжести). Опытным путем (О. Фишер, Н.А. Бернштейн) были определены сред- ние данные о весе звеньев тела и положении их центров тяжести. Если принять вес тела за 100%, то вес каждого звена может быть выражен в от- носительных единицах (%). При выполнении расчетов не обязательно знать ни вес всего тела, ни каждого его звена в абсолютных единицах. Центры тяжести звеньев определены или по анатомическим ориенти- рам (голова, кисть), или по относительному расстоянию ЦТ от прокси- 10 мального сустава (радиус центра тяжести - часть всей длины конечностей), или по пропорции (туловище, стопа). При учебных расчетах принято считать относительный вес головы рав- ным 7% веса всего тела, туловища - 43, плеча - 3, предплечья - 2, кисти - 1, бедра - 12, голени - 5, стопы - 2. Центр тяжести звена определяют по расстоянию от него до оси про- ксимального сустава - по радиусу центра тяжести. Его выражают относи- тельно длины всего звена, принятой за единицу, считая от проксимального сочленения. Для бедра он составляет приближенно 0,44; для голени - 0,42; для плеча - 0,47; для предплечья - 0,42; для туловища - 0,44 (отмеряют рас- стояние от поперечной оси плечевых суставов до оси тазобедренных сус- тавов). Центр тяжести головы расположен в области турецкого седла кли- новидной кости (проекция спереди на поверхность головы - между бровя- ми, сбоку - на 3-3,5 см выше наружного слухового прохода). Центр тяже- сти кисти расположен в области головки третьей пястной кости, центр тя- жести стопы - на прямой, соединяющей пяточный бугор пяточной кости с концом второго пальца, на расстоянии 0,44 от первой точки (рис. 6). 11 Рис. 6. Расположение ЦТ звеньев тела человека и их относительный вес 12 Зная вес звеньев и радиусы центров их тяжести, можно приближенно опре- делить положение ОЦТ всего тела. Общий центр тяжести всего тела - это воображаемая точка, к которой приложена равнодействующая сил тяжести всех звеньев тела. При основ- ной стойке он расположен в области малого таза, впереди крестца (по М.Ф. Иваницкому). 3. ОПРЕДЕЛЕНИЕ ОБЩЕГО ЦЕНТРА ТЯЖЕСТИ ТЕЛА ЧЕЛОВЕКА ГРАФИЧЕСКИМ СПОСОБОМ Графический способ определение ОЦТ человека основан на сложении параллельных сил тяжести звеньев тела. 3.1. Определение центра тяжести (ЦТ) звеньев тела человека Центры тяжести головы и туловища определяют по анатомическим ориентирам. Для определения местоположения ЦТ остальных звеньев пользуются данными радиусов центров тяжести (k), значения которых представлены на рис. 6. Для этого необходимо длину звена (l) умножить на соответствующее зна- чение радиуса центра тяжести: x=l⋅k. (11) Полученный результат отложить от проксимального сустава. Например, для определения ЦТ плеча (рис. 7) необходимо длину звена аб умножить на 0,47 (k = 0,47): Рис. 7. Определение центра тяжести xпл = аб ⋅ 0,47. звена: l - длина звена, х - расстояние от проксимального сустава до ЦТ Полученный результат отложить от точки а; находим точку А. 3.2. Определение ЦТ двух звеньев Для определения ЦТ двух звеньев (например, плеча и предплечья - рис. 8) необходимо предварительно найти ЦТ каждого звена и воспользоваться 13 значениями их относительных весов. Место положения ЦТ звеньев опре- деляем, как указано в разделе 3.1. Другими словами, нам необхо- димо найти точку приложения рав- нодействующей двух параллельных сил тяжести плеча и предплечья. Следует помнить, что точка приложения двух параллельных сил лежит на линии, соединяющей начала двух векторов, в нашем слу- чае - на линии АБ, соединяющей центры тяжести плеча и предпле- чья, причем чем больше сила тяже- сти, тем ближе к ней бу- Рис. 8. Определение ЦТ двух звеньев дет расположена точка, и наоборот. То есть существует обратно пропор- циональная зависимость между значением силы и расстоянием до искомой точки. Обозначим l длину отрезка АБ, x - расстояние от ЦТ плеча до искомой точки и напишем равенство: Рпл x , = Р пр l − x из которого можно определить l x= ⋅ Р пр. (12) Pп л + Р п р Таким образом, для того, чтобы определить место положения ЦТ двух звеньев, необходимо длину отрезка, соединяющего ЦТ этих звеньев, раз- делить на сумму их относительных весов, умножить на относительный вес одного из звеньев, затем отложить полученный результат от ЦТ второго звена. Отложив отрезок х от точки А, находим общий центр тяжести плеча и предплечья (точка И). 3.3. Определение общего центра тяжести тела человека по заданной позе 14 Для определения ОЦТ всего тела пользуются данными значений ра- диусов центров тяжести (k) и относительных весов звеньев (р, % - указаны на рис. 6). Считаем, что поза задана рис. 9 (прописными буквами обозна- чены центры суставов). Рис. 9. Расположение ЦТ звеньев 15 Чтобы определить ЦТ каждого звена, применим способ, описанный в разделе 3.1. Используя формулу (10), получим: аА = аб ⋅ 0,47 - ЦТ плеча; бБ = бв ⋅ 0,42 - ЦТ предплечья; аД = аг ⋅ 0,44 - ЦТ туловища; гЕ = гд ⋅ 0,44 - ЦТ бедра; дЖ = де ⋅ 0,42 - ЦТ голени; жЗ = жз ⋅ 0,44 - ЦТ стопы. Отложим полученные результаты на соответствующих звеньях и обо- значим центры тяжести крестиками и заглавными буквами А, Б, В, Г, Д, Е, Ж, З. Затем находим общий центр тяжести двух звеньев - плеча и пред- плечья (см. раздел 3.2. - рис. 8): АБ Ц Тп л + п р → АИ = ⋅2 . 3+ 2 16 Рис. 10. Определение ЦТ руки Находим точку И, к ней приложена равнодействующая сил тяжести плеча и предплечья (относительный вес Рпл+пр = 3+2 = 5%). Далее, приба- вив вес кисти (рис. 10), найдем ЦТ всей руки. Для этого соединим точку И с ЦТ кисти (точка В) и определим: ИВ ЦТруки → ИК = ⋅1 . 5+ 1 Находим точку К - общий центр тяжести всей руки (относительный вес руки Рруки= 6%). Так же последовательно суммируем вес звеньев ноги (рис. 11): ЕЖ ЦТгол. + бед. → ЕЛ = ⋅5. 12 + 5 Откладывая результат от точки Е, находим общий центр тяжести голе- ни и бедра - точку Л (Ргол. + бед. = 17%). Находим общий центр тяжести ноги (Рноги = 19%): ЛЗ ЦТноги → ЛМ = ⋅2. 17 + 2 Находим общий центр тяжести руки и ноги (рис. 12). Соединяем их центры тяжести (точки К и М) прямой и определяем: МК ЦТрук. + ног. → М Н = ⋅6. 19 + 6 Откладываем результат от точки М и находим точку Н - общий центр тяжести руки и ноги (Ррук. + ног. = 25%). Определяем общий центр тяжести головы и туловища. Для этого со- единяем их центры тяжести (точки Д и Г) линией и определяем: ДГ ЦТгол. + тул. → ДО = ⋅7. 43 + 7 Находим точку О (относительный вес Ргол. + тул. = 43 + 7 = 50%). 17 Если положение симметричное, то значит ЦТ обеих рук расположены одинаково, так же, как и обеих ног. Определяя общий центр тяжести чело- века, нельзя забывать удвоить относительный вес конечностей. Определив положение ОЦТ головы и туловища (50% веса тела), а так- же всех конечностей (другая половина веса тела), соединяем названные точки отрезком ОН, который делим пополам. В этой точке и расположен ОЦТ всего тела (точка П). 18 Рис. 11. Определение ЦТ ноги 19

  • 47. Возрастные и половые особенности развития мускулатуры, влияние трудовой деятельности и занятий физической культурой и спортом на развитие мускулатуры.
  • 48. Образования вспомогательного аппарата мышц (фасции, фасциальные связки, фиброзные и костно-фиброзные каналы, синовиальные влагалища, слизистые сумки, сесамовидные кости, блоки) и их функции.
  • 49. Мышцы живота: топография, начало, прикрепление и функции.
  • 50. Мышцы вдоха. Мышцы выдоха.
  • 52. Мышцы шеи: топография, начало, прикрепление и функции.
  • 53. Мышцы, сгибающие позвоночник.
  • 54. Мышцы, разгибающие позвоночник.
  • 55. Мышцы передней поверхности предплечья: начало, прикрепление и функции.
  • 56. Мышцы задней поверхности предплечья: начало, прикрепление и функции.
  • 57. Мышцы, производящие движения пояса верхней конечности вперед и назад.
  • 58. Мышцы, производящие движения пояса верхней конечности вверх и вниз.
  • 59. Мышцы, сгибающие и разгибающие плечо.
  • 60. Мышцы, отводящие и приводящие плечо.
  • 61. Мышцы, супинирующие и пронирующие плечо.
  • 62. Мышцы, сгибающие (основные) и разгибающие предплечье.
  • 63. Мышцы, супинирующие и пронирующие предплечье.
  • 64. Мышцы, сгибающие и разгибающие кисть и пальцы.
  • 65. Мышцы, отводящие и приводящие кисть.
  • 66. Мышцы бедра: топография и функции.
  • 67. Мышцы, сгибающие и разгибающие бедро.
  • 68. Мышцы, отводящие и приводящие бедро.
  • 69. Мышцы, супинирующие и пронирующие бедро.
  • 70. Мышцы голени: топография и функции.
  • 71. Мышцы, сгибающие и разгибающие голень.
  • 72. Мышцы, супинирующие и пронирующие голень.
  • 73. Мышцы, сгибающие и разгибающие стопу.
  • 74. Мышцы, отводящие и приводящие стопу.
  • 75. Мышцы супинирующие и пронирующие стопу.
  • 76. Мышцы, удерживающие своды стопы.
  • 77. Общий центр тяжести тела: возрастные, половые и индивидуальные особенности его расположения.
  • 78. Виды равновесия: угол устойчивости, условия сохранения равновесия тела.
  • 79. Анатомическая характеристика антропометрического, спокойного и напряженного положения тела.
  • 80. Вис на выпрямленных руках: анатомическая характеристика, особенности механизма внешнего дыхания.
  • 81. Общая характеристика ходьбы.
  • 82. Анатомическая характеристика 1,2 и 3 фаз двойного шага.
  • 83. Анатомическая характеристика 4, 5 и 6 фаз двойного шага.
  • 84. Прыжок в длину с места: фазы, работа мышц.
  • 85. Анатомическая характеристика сальто назад.
  • 77. Общий центр тяжести тела: возрастные, половые и индивидуальные особенности его расположения.

    Общим центром тяжести (ОЦТ) человека называют точку приложения равнодействующих всех сил тяжести частей его тела. ОЦТ располагается на уровне I-V крестцовых позвонков и проецируется на переднюю поверхность тела выше лобкового симфиза. Положение ОЦТ по отношению к продольной оси тела и позвоночного столба зависит от возраста, пола, костей скелета, мышц и отложений жира. Кроме того, наблюдаются суточные колебания положения ОЦТ в связи с укорочением или удлинением позвоночного столба, которые возникают из-за неравномерных физических нагрузок днем и ночью. У пожилых и старых людей положение ОЦТ зависит также от осанки. У мужчин ОЦТ располагается на уровне III поясничного - V крестцового позвонков, у женщин - на 4-5 см ниже, чем у мужчин, и соответствует уровню от V поясничного до I копчикового позвонка. Это зависит, в частности, от большего, чем у мужчин, отложения подкожного жира в области таза и бедер. У новорожденных ОЦТ находится на уровне V-VI грудных позвонков, а затем постепенно (до 16-18 лет) опускается вниз и перемещается несколько кзади.

    Положение ОЦТ тела человека зависит также от типа телосложения. У лиц долихоморфного типа телосложения (у астеников) ОЦТ располагается относительно ниже, чем у лиц брахиморфного типа телосложения (у гиперстеников).

    В результате исследований было установлено, что ОЦТ тела человека находится обычно на уровне II крестцового позвонка. Отвесная линия центра тяжести проходит на 5 см позади поперечной оси тазобедренных суставов, примерно на 2,6 см кзади от линии, соединяющей большие вертелы, и на 3 см кпереди от поперечной оси голеностопных суставов. Центр тяжести головы располагается немного кпереди от поперечной оси атлантозатылочных суставов. Общий центр тяжести головы и туловища находится на уровне середины переднего края X грудного позвонка.

    Для сохранения устойчивого равновесия тела человека на плоскости необходимо, чтобы перпендикуляр, опущенный из его центра тяжести, падал на площадь, занимаемую обеими ступнями. Тело стоит тем прочнее, чем шире площадь опоры и чем ниже расположен центр тяжести. Для вертикального положения тела человека сохранение равновесия является главной задачей. Однако, напрягая соответствующие мышцы, человек может удержать тело в различных положениях (в известных пределах) даже тогда, когда проекция центра тяжести выведена за пределы площади опоры (сильный наклон туловища вперед, в стороны и т.д.). Вместе с тем стояние и передвижение тела человека нельзя считать устойчивыми. При относительно длинных ногах человек имеет сравнительно небольшую площадь опоры. Поскольку общий центр тяжести тела у человека расположен сравнительно высоко (на уровне II крестцового позвонка), а опорная площадь (площадь двух подошв и пространства между ними) незначительна, устойчивость тела очень невелика. В состоянии равновесия тело удерживается силой мышечных сокращений, что предотвращает его от падения. Части тела (голова, туловище, конечности) при этом занимают соответствующее каждой из них положение. Однако если будет нарушено соотношение частей тела (например, вытягивание рук вперед, сгибание позвоночника при стоянии и т.д.), то соответственно изменяются положение и равновесие других частей тела. Статические и динамические моменты действия мускулатуры находятся в прямой связи с положением центра тяжести тела. Поскольку центр тяжести всего тела располагается на уровне II крестцового позвонка позади поперечной линии, соединяющей центры тазобедренных суставов, стремлению туловища (вместе с тазом) опрокинуться назад противостоят сильно развитые мышцы и связки, укрепляющие тазобедренные суставы. Так обеспечивается равновесие всей верхней части тела, удерживающейся на ногах в вертикальном положении.

    Стремление тела упасть вперед при стоянии обусловлено прохождением вертикали центра тяжести впереди (на 3-4 см) от поперечной оси голеностопных суставов. Падению противостоят действия мышц задней поверхности голени. Если отвесная линия центра тяжести переместится еще дальше кпереди - к пальцам, то сокращением задних мышц голени пятка приподнимается, отрывается от плоскости опоры, отвесная линия центра тяжести перемещается вперед и опорой служат пальцы стопы.